CSE 421 Algorithms

Sequence Alignment

Sequence Alignment

What

Why

A Dynamic Programming Algorithm

Sequence Similarity: What

GGACCA

TACTAAG

TCCAAG

Sequence Similarity: What

GGACCA

Sequence Similarity: Why

Bio

Most widely used comp. tools in biology New sequence always compared to data bases

Similar sequences often have similar origin or function

Recognizable similarity after 10⁸ –10⁹ yr DNA sequencing & assembly

Other

spell check/correct, diff, svn/git/..., plagiarism, ...

BLAST Demo

http://www.ncbi.nlm.nih.gov/blast/

Taxonomy Report

Try it!
pick any protein, e.g.
hemoglobin, insulin,
exportin,... BLAST to
find distant relatives.

64 hits	16 orgs
62 hits	14 orgs [cellular organisms]
57 hits	11 orgs
38 hits	7 orgs [Metazoa; Eumetazoa]
36 hits	6 orgs
26 hits	5 orgs [;;; Vertebrata;;;; Sarcopterygii]
24 hits	4 orgs [Amniota; Mammalia; Theria]
20 hits	<pre>1 orgs [Primates;; Hominidae; Homo]</pre>
3 hits	2 orgs [Rodentia; Sciurognathi; Muridae]
2 hits	1 orgs [Rattus]
1 hits	1 orgs [Mus]
1 hits	1 orgs [Cetartiodactyla; Suina; Suidae; Sus]
2 hits	<pre>1 orgs [Amphibia;;;;;; Xenopodinae; Xenopus]</pre>
10 hits	<pre>1 orgs [Protostomia;;;; Drosophila;;;]</pre>
2 hits	<pre>1 orgs [; Nematoda;;;;;; Caenorhabditis]</pre>
19 hits	4 orgs [Fungi]
10 hits	<pre>1 orgs [;;;; Schizosaccharomyces]</pre>
9 hits	<pre>3 orgs [Saccharomycotina; Saccharomycetes]</pre>
8 hits	2 orgs [Saccharomycetaceae]
7 hits	1 orgs
1 hits	1 orgs
1 hits	<pre>1 orgs [mitosporic Saccharomycetales;]</pre>
2 hits	<pre>1 orgs [Viridiplantae;Brassicaceae;]</pre>
3 hits	2 orgs [Alveolata]
2 hits	<pre>1 orgs [Haemosporida; Plasmodium]</pre>
1 hits	<pre>1 orgs [Coccidia; Eimeriida; Sarcocystidae;]</pre>
1 hits	<pre>1 orgs [other; artificial sequence]</pre>
1 hits	1 orgs [Viruses; dsDNA viruses, no RNA]
	62 hits 57 hits 38 hits 36 hits 26 hits 24 hits 20 hits 3 hits 2 hits 1 hits 1 hits 2 hits 10 hits 2 hits 10 hits 4 hits 10 hits 5 hits 11 hits 11 hits 12 hits 13 hits 14 hits 15 hits 16 hits 17 hits 17 hits 18 hits

Terminology

- String: ordered list of letters TATAAG
- Prefix: consecutive letters from front empty, T, TA, TAT, ...
- Suffix: ... from end empty, G, AG, AAG, ...
- Substring: ... from ends or middle empty, TAT, AA, ...
- Subsequence: ordered, nonconsecutive TT, AAA, TAG, ...

Sequence Alignment

Defn: An *alignment* of strings S, T is a pair of strings S', T' (with dashes) s.t.

(1)
$$|S'| = |T'|$$
, and ($|S| = "length of S")$

(2) removing all dashes leaves S, T

Alignment Scoring

a c b c d b

a c - - b c d b

c a d b d

- c a d b - d -

-1 2 -1 -1 2 -1 2 -1

Value =
$$3*2 + 5*(-1) = +1$$

The *score* of aligning (characters or dashes) x & y is $\sigma(x,y)$.

Value of an alignment $\sum_{i=1}^{|S'|} \sigma(S'[i], T'[i])$

$$\sum_{i=1}^{|S'|} \sigma(S'[i], T'[i])$$

An optimal alignment: one of max value (Assume $\sigma(-,-) < 0$)

Alignment by Dynamic Programming?

Common Subproblems?

Plausible: probably re-considering alignments of various small substrings unless we're careful.

Optimal Substructure?

Plausible: left and right "halves" of an optimal alignment probably should be optimally aligned (though they obviously interact a bit at the interface).

(Both made rigorous below.)

Optimal Substructure (In More Detail)

Optimal alignment *ends* in 1 of 3 ways: last chars of S & T aligned with each other last char of S aligned with dash in T last char of T aligned with dash in S (never align dash with dash; $\sigma(-, -) < 0$)

In each case, the *rest* of S & T should be *optimally* aligned to each other

Optimal Alignment in O(n²) via "Dynamic Programming"

Input: S, T, |S| = n, |T| = m

Output: value of optimal alignment

Easier to solve a "harder" problem:

V(i,j) = value of optimal alignment of S[1], ..., S[i] with T[1], ..., T[j] for all $0 \le i \le n$, $0 \le j \le m$.

Base Cases

V(i,0): first i chars of S all match dashes

$$V(i,0) = \sum_{k=1}^{i} \sigma(S[k],-)$$

V(0,j): first j chars of T all match dashes

$$V(0,j) = \sum_{k=1}^{j} \sigma(-,T[k])$$

General Case

Opt align of S[1], ..., S[i] vs T[1], ..., T[j]:

$$\begin{bmatrix} \sim \sim \sim S[i] \\ \sim \sim \sim T[j] \end{bmatrix}, \quad \begin{bmatrix} \sim \sim \sim S[i] \\ \sim \sim \sim - \end{bmatrix}, \text{ or } \begin{bmatrix} \sim \sim \sim - \\ \sim \sim \sim T[j] \end{bmatrix}$$
Opt align of
$$\begin{bmatrix} S_1 \dots S_{i-1} & & \\ & & \\ & & & \\ & &$$

Opt align of
$$S_{1}...S_{i-1} & \\ V(i,j) = \max \begin{cases} V(i-1,j-1) + \sigma(S[i],T[j]) \\ V(i-1,j) + \sigma(S[i],-) \\ V(i,j-1) + \sigma(-,T[j]) \end{cases}$$

for all $1 \le i \le n$, $1 \le j \le m$.

Calculating One Entry

$$V(i,j) = \max \begin{cases} V(i-1,j-1) + \sigma(S[i],T[j]) \\ V(i-1,j) + \sigma(S[i],-) \\ V(i,j-1) + \sigma(-,T[j]) \end{cases}$$

$$V(i-1,j-1) \qquad V(i-1,j)$$

$$V(i-1,j-1) \qquad V(i-1,j)$$

	j	0	1	2	3	4	5				
<u>i</u>			С	a	d	b	d	←			
0		0	-1	-2	-3	-4	-5				
1	a	-1									
2	С	-2		C -	c						
3	b	-3									
4	O	-4									
5	d	-5									
6	b	-6									

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	← T
0		0	-1	-2	-3	-4	-5	
1	a	-1						
2	О	-2						
3	b	-3		Sco	ore(-,a	n) = -1		
4	O	-4	a		_			
5	d	-5						
6	b	-6						

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	← T
0		0	-1	-2	-3	-4	-5	
1	a	-1						
2	О	-2						
3	b	-3						
4	С	-4	_	- Sc	ore(-,c	;) = -1		
5	d	-5	-1		,			
6	b	-6						

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	а	-1	-1	1				
2	С	-2						
3	b	-3						2
4	С	-4				σ(a,	a)=+2	σ(-,a)=-1
5	d	-5				σla	-)=-1	1 -3 ca-
6	b	-6					>	-2 1 ca
	\$ \$							a – a – 19

Example

	j	0	1	2	3	4	5
<u>i</u>			C	a	d	b	d
0		0	-1	-2	-3	-4	-5
1	a	-1	-1	1			
2	С	-2	1				
3	b	-3					
4	С	-4					
5	р	-5					
6	b	-6					

←T

Time = O(mn)

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	
0		0	-1	-2	-3	-4	-5	
1	а	-1	-1	1	0	-1	-2	
2	С	-2	1	0	0	-1	-2	
3	b	-3	0	0	-1	2	1	
4	С	-4	-1	-1	-1	1	1	
5	р	-5	-2	-2	1	0	3	
6	b	-6	-3	-3	0	3	2	

Finding Alignments: Trace Back

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	- 1	-2	-3	-4	-5	
1	a	<u>-1</u>	-1	1	0	-1	-2	
2	С	-2	1	0	0	-1	-2	
3	р	-3	0	0	1	2	1	
4	С	-4	-1	-1	-1	1,	1	
5	d	-5	-2	-2	1,	0	3	
6	b	-6	-3	-3	0	3	_2	
								•

Complexity Notes

Time = O(mn), (value and alignment)

Space = O(mn)

Easy to get value in Time = O(mn) and Space = O(min(m,n))

Possible to get value and alignment in Time = O(mn) and Space = O(min(m,n)) (KT section 6.7)

Significance of Alignments

Is "42" a good score?

Compared to what?

Usual approach: compared to a specific "null model", such as "random sequences"

Interesting stats problem; much is known

Variations

Local Alignment

- Preceding gives *global* alignment, i.e. full length of both strings;
- Might well miss strong similarity of part of strings amidst dissimilar flanks

Gap Penalties

10 adjacent spaces cost 10 x one space?

Many others

Similarly fast DP algs often possible

Summary: Alignment

- Functionally similar proteins/DNA often have recognizably similar sequences even after eons of divergent evolution
- Ability to find/compare/experiment with "same" sequence in other organisms is a huge win
- Surprisingly simple scoring works well in practice: score positions separately & add, usually w/ fancier gap model like affine
- Simple dynamic programming algorithms can find *optimal* alignments under these assumptions in poly time (product of sequence lengths)
- This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology, and elsewhere.

Summary: Dynamic Programming

Keys to D.P. are to

- a) identify the subproblems (usually repeated/overlapping)
- b) solve them in a careful order so all small ones solved before they are needed by the bigger ones, and
- c) build table with solutions to the smaller ones so bigger ones just need to do table lookups (*no* recursion, despite recursive formulation implicit in (a))
- d) Implicitly, optimal solution to whole problem devolves to optimal solutions to subproblems

A really important algorithm design paradigm