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algorithm design paradigms: divide and conquer 

Outline:	


General Idea	



Review of Merge Sort	


Why does it work?  	



Importance of balance	



Importance of super-linear growth	



Some interesting applications	


Closest points	



Integer Multiplication	



Finding & Solving Recurrences	
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algorithm design techniques 

Divide & Conquer	


Reduce problem to one or more sub-problems of 
the same type	



Typically, each sub-problem is at most a constant 
fraction of the size of the original problem	



Subproblems typically disjoint	


Often gives significant, usually polynomial, speedup	


Examples:	



Binary Search, Mergesort, Quicksort (roughly), 
Strassen’s Algorithm, integer multiplication, powering, 
FFT, …	





Motivating Example:  
Mergesort 
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merge sort 
	


MS(A: array[1..n]) returns array[1..n] {	



If(n=1) return A;	


New U:array[1:n/2] = MS(A[1..n/2]);	


New L:array[1:n/2] = MS(A[n/2+1..n]);	


Return(Merge(U,L));	


}	



	


Merge(U,L: array[1..n]) {	



New C: array[1..2n];	


a=1; b=1;	


For i = 1 to 2n 	


	

C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;	



Return C;	


}	
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split     sort    merge	





Why does it work?  Suppose we’ve already 
invented DumbSort, taking time n2	



Try Just One Level of divide & conquer:	



DumbSort(first  n/2 elements) 	



DumbSort(last  n/2 elements)	



Merge results	



Time:  2 (n/2)2 + n = n2/2 + n ≪ n2	



Almost twice as fast!	
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divide & conquer – the key idea 

D&C in a 	


nutshell	
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d&c approach, cont. 

Moral 1: “two halves are better than a whole”	


	

Two problems of half size are better than one full-size 
problem, even given O(n) overhead of recombining, since 
the base algorithm has super-linear complexity.	


	


Moral 2: “If a little's good, then more's better”	


	

Two levels of D&C would be almost 4 times faster, 3 levels 
almost 8, etc., even though overhead is growing. ���
Best is usually full recursion down to some small constant 
size (balancing "work" vs "overhead").	



    In the limit: you’ve just rediscovered mergesort!	





d&c approach, cont. 

Moral 3: unbalanced division good, but less so:	


(.1n)2 + (.9n)2 + n = .82n2 + n	



The 18% savings compounds significantly if you carry recursion to 
more levels, actually giving O(nlogn), but with a bigger constant.  
So worth doing if you can’t get 50-50 split, but balanced is better 
if you can.	


This is intuitively why Quicksort with random splitter is good – 
badly unbalanced splits are rare, and not instantly fatal.	



Moral 4: but consistent, completely 
unbalanced division doesn’t help much:	



(1)2 + (n-1)2 + n = n2 - n + 2 	


Little improvement here.  	
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mergesort (review) 

Mergesort: (recursively) sort 2 half-lists, then 
merge results.	


	


T(n) = 2T(n/2)+cn,  n≥2	


T(1) = 0	



Solution: Θ(n log n) ���
(details later)	

 Lo
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O(n) ���
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Example:  
Counting Inversions 
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Inversion Problem 

Let a1, . . . an be a permutation of 1 . . n 
(ai, aj) is an inversion if i < j and ai > aj 

 
 
 
Problem: given a permutation, count the number 

of inversions 
This can be done easily in O(n2) time 

Can we do better? 

4, 6, 1, 7, 3, 2, 5 
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Application 

Counting inversions can be use to 
measure closeness of ranked preferences 

People rank 20 movies, based on their 
rankings you cluster people who like the same 
types of movies 
 

Can also be used to measure nonlinear 
correlation 
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Inversion Problem 

Let a1, . . . an be a permutation of 1 . . n 
(ai, aj) is an inversion if i < j and ai > aj 

 
 
 
Problem: given a permutation, count the number 

of inversions 
This can be done easily in O(n2) time 

Can we do better? 

4, 6, 1, 7, 3, 2, 5 
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Counting Inversions 

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14 

Count inversions on left half 

Count inversions on right half 

Count the inversions between the halves 
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11 12 4 1 7 2 3 15 

11 12 4 1 7 2 3 15 

9 5 16 8 6 13 10 14 

9 5 16 8 6 13 10 14 

Count the Inversions 

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14 
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Can we count inversions between 
sub-problems in O(n) time? 

Yes – Count inversions while merging 

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16 

                                

Standard merge algorithm – add to inversion count 
when an element is moved from the right array to the 
solution.  (Add how much? Why not left array?) 
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Counting inversions while merging 

1 4 11 12 2 3 7 15 

                

5 8 9 16 6 10 13 14 

                

Indicate the number of inversions for each element detected when merging 
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Inversions 
Counting inversions between two sorted lists 

O(1) per element to count inversions 
 
 
 
 
 
 

 
 
Algorithm summary 

Satisfies the “Standard recurrence”  
T(n) = 2 T(n/2) + cn 

 x  x  x  x  x  x  x  x  y  y  y  y  y  y  y  y 

 z  z  z  z  z  z  z  z  z  z  z  z  z  z  z  z 
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 A Divide & Conquer Example: 
Closest Pair of Points 
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closest pair of points: non-geometric version 

Given n points and arbitrary distances between them, 
find the closest pair.  (E.g., think of distance as airfare 
– definitely not Euclidean distance!)	



	


	


	



	


	



Must look at all n choose 2 pairwise distances, else ���
any one you didn’t check might be the shortest.  	



Also true for Euclidean distance in 1-2 dimensions?	



(… and all the rest of the (n) edges…)	

2	
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closest pair of points: 1 dimensional version 

Given n points on the real line, find the closest pair	


	


	



	


Closest pair is adjacent in ordered list	


Time O(n log n) to sort, if needed	



Plus O(n) to scan adjacent pairs	


Key point: do not need to calc distances between all 

pairs: exploit geometry + ordering	
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closest pair of points: 2 dimensional version 
Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.	



	



Fundamental geometric primitive.	


Graphics, computer vision, geographic information systems, molecular 
modeling, air traffic control.	



Special case of nearest neighbor, Euclidean MST, Voronoi.	


	


	



Brute force.  Check all pairs of points p and q with Θ(n2) comparisons.	


	



1-D version.  O(n log n) easy if points are on a line.	


	



Assumption.  No two points have same x coordinate.	



Just to simplify presentation	



fast closest pair inspired fast algorithms for these problems	
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closest pair of points. 2d, Euclidean distance:  1st try 

Divide.  Sub-divide region into 4 quadrants.	
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closest pair of points:  1st try 

Divide.  Sub-divide region into 4 quadrants.	


Obstacle.  Impossible to ensure n/4 points in 

each piece.	
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closest pair of points 

Algorithm.	


Divide: draw vertical line L with ≈ n/2 points on each side.	
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closest pair of points 

Algorithm.	


Divide: draw vertical line L with ≈ n/2 points on each side.	


Conquer:  find closest pair on each side, recursively.	
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closest pair of points 

Algorithm.	


Divide: draw vertical line L with ≈ n/2 points on each side.	


Conquer:  find closest pair on each side, recursively.	



Combine:  find closest pair with one point in each side.	



Return best of 3 solutions.	
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seems ���
like ���
Θ(n2) ?	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	
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δ = min(12, 21)	



L	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	



Observation:  suffices to consider points within δ of line L.	
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δ	



L	



δ = min(12, 21)	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	



Observation:  suffices to consider points within δ of line L.	



Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate.	
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δ = min(12, 21)	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	



Observation:  suffices to consider points within δ of line L.	



Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate. Only check pts within 8 in sorted list!	
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closest pair of points 

Def.  Let si have the ith smallest���
y-coordinate among points ���
in the 2δ-width-strip.	



Claim.  If |i – j| > 8, then the ���
distance between  si and sj ���
is > δ.	



Pf:  No two points lie in the ���
same ½δ-by-½δ box: ���
	


	



	

so ≤ 8 boxes within +δ of y(si). 	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= ??) return ?? 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 



closest pair of points:  analysis 

Analysis, I:  Let D(n) be the number of pairwise distance 
calculations in the Closest-Pair Algorithm when run on n ≥ 1 
points	



	


	


	



	


BUT – that’s only the number of distance calculations	


	



What if we counted comparisons?	
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€ 

D(n) ≤
0 n =1

2D n /2( ) + 7n n >1
# 
$ 
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⇒ D(n)  =  O(n logn)



closest pair of points:  analysis 
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T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

C(n) ≤
0 n =1

2C n / 2( ) + kn logn n >1

"
#
$

%$

&
'
$

($
⇒ C(n) = O(n log2 n)

for some constant k

Analysis, II:  Let C(n) be the number of comparisons between 
coordinates/distances in the Closest-Pair Algorithm when run 
on n ≥ 1 points	



	


	



	



	


Q.  Can we achieve O(n log n)?	



	


A.  Yes. Don't sort points from scratch each time.	



Sort by x at top level only.	



Each recursive call returns δ and list of all points sorted by y	


Sort by merging two pre-sorted lists.	





is it worth the effort? 

Code is longer & more complex	


O(n log n) vs O(n2) may hide 10x in constant?	


	


How many points?	
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n	


Speedup:���

n2 / (10 n log2 n)	



10	

 0	

.3	



100	

 1	
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1,000	

 10	



10,000	

 75	



100,000	

 602	



1,000,000	

 5,017	



10,000,000	

 43,004	





Going From Code to Recurrence 
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going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	



“Let C(n) be the number of comparisons between sort keys 
used by MergeSort when sorting a list of length n ≥ 1”	



In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	


Write Recurrence(s)	
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merge sort 

MS(A: array[1..n]) returns array[1..n] {	


If(n=1) return A;	


New L:array[1:n/2] = MS(A[1..n/2]);	


New R:array[1:n/2] = MS(A[n/2+1..n]);	


Return(Merge(L,R));	


}	



Merge(A,B: array[1..n]) {	


New C: array[1..2n];	


a=1; b=1;	


For i = 1 to 2n {	


	

C[i] = “smaller of A[a], B[b] and a++ or b++”;	



Return C;	


}	
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Recursive 
calls	



	



Base Case	



One���
Recursive	


Level	



Operations	


being 	


counted	





the recurrence 
	


	


	


	


	


	


	



	


	


Total time: proportional to C(n)	


  (loops, copying data, parameter passing, etc.)	
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€ 

C(n) =
0 if n =1
2C(n /2) + (n −1) if n >1
# 
$ 
% 

One compare per 
element added to 
merged list, except 
the last.	



Base case	



Recursive calls	





going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	



“Let D(n) be the number of pairwise distance calculations���
  in the Closest-Pair Algorithm when run on n ≥ 1 points”	



In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	


Write Recurrence(s)	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= 1) return ∞ 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 

Recursive calls (2)	



Basic operations at 	


this recursive level	



Basic operations:	


distance calcs	



2D(n / 2)	



7n 	



0	

Base Case	



One ���
recursive ���

level	





Analysis, I:  Let D(n) be the number of pairwise distance 
calculations in the Closest-Pair Algorithm when run on n ≥ 1 
points	



	


	


	



	


BUT – that’s only the number of distance calculations	


	



What if we counted comparisons?	



closest pair of points:  analysis 
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€ 

D(n) ≤
0 n =1

2D n /2( ) + 7n n >1
# 
$ 
% 

& 
' 
( 

⇒ D(n)  =  O(n logn)



going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	



“Let D(n) be the number of comparisons between 
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points”	



In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	


Write Recurrence(s)	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= 1) return ∞ 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 

2C(n / 2)	



Recursive calls (2)	



Basic operations:	


comparisons	



0	



Base Case	



One ���
recursive ���

level	



k1n log n	



Basic operations at 	


this recursive level	



k2n	



k3n log n	



7n	



1	





closest pair of points:  analysis 

46	

  

€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

C(n) ≤
0 n =1

2C n / 2( ) + k4n logn n >1

"
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⇒ C(n) = O(n log2 n)

for some k4 ≤ k1 + k2 + k3 + 7

Analysis, II:  Let C(n) be the number of comparisons of 
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points	



	


	



	



	


Q.  Can we achieve time O(n log n)?	



	


A.  Yes. Don't sort points from scratch each time.	



Sort by x at top level only.	



Each recursive call returns δ and list of all points sorted by y	


Sort by merging two pre-sorted lists.	





Integer Multiplication 
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integer arithmetic 

Add.  Given two n-bit ���
integers a and b, ���
compute a + b.	



O(n) bit operations.	



	



Multiply.  Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  	



Θ(n2) bit operations.	
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Multiply	



0	

0	

0	

0	

0	

0	

0	

0	





integer arithmetic 

Add.  Given two n-bit ���
integers a and b, ���
compute a + b.	



O(n) bit operations.	



	



Multiply.  Given two n-bit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  	



Θ(n2) bit operations.	
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divide & conquer multiplication:  warmup 

To multiply two 2-digit integers:	


Multiply four 1-digit integers.	


Add, shift some 2-digit integers to obtain result.	



	


	


	



	


Same idea works for long integers –	


can split them into 4 half-sized ints���
(“10” becomes “10k”, k = length/2)	
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x = 10⋅ x1  +  x0
y = 10⋅ y1  +  y0

xy = 10⋅ x1 + x0( ) 10⋅ y1  + y0( )
= 100 ⋅ x1y1  + 10⋅ x1y0 + x0y1( ) + x0y0
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divide & conquer multiplication:  warmup 

To multiply two n-bit integers:	


Multiply four ½n-bit integers.	


Shift/add four n-bit integers to obtain result.	
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€ 

T(n)  =  4T n /2( )
recursive calls
     

 +  Θ(n)
add, shift
    ⇒  T(n) =Θ(n2 )

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( )
= 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0y1( ) + x0y0

assumes n is a power of 2	
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key trick: 2 multiplies for the price of 1: 
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x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( )
= 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0y1( ) + x0y0

€ 

α = x1  +  x0

β = y1  +  y0

αβ = x1 + x0( ) y1  + y0( )
= x1y1  + x1y0 + x0y1( ) + x0y0

x1y0 + x0y1( ) = αβ − x1y1 − x0y0

Well, ok, 4 for 3 is 
more accurate…	





Karatsuba multiplication 

To multiply two n-bit integers:	


Add two pairs of ½n bit integers.	



Multiply three pairs of ½n-bit integers.	



Add, subtract, and shift n-bit integers to obtain result.	



	



	


	



	


	


Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit 
integers in O(n1.585) bit operations.	



	



53	



  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0

  

€ 

T(n) ≤ T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

                 
+ Θ(n)

add, subtract, shift
     

Sloppy version :  T(n) ≤ 3T(n /2) + O(n)

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A	

 B	

 C	

A	

 C	





Karatsuba multiplication 

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit 
integers in O(n1.585) bit operations.	



	



54	



  

€ 

T(n) ≤ T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

                 
+ Θ(n)

add, subtract, shift
     

Sloppy version :  T(n) ≤ 3T(n /2) + O(n)

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )



55	





56	





multiplication – the bottom line 

Naïve: 	

 	

Θ(n2)	


Karatsuba: 	

Θ(n1.59…)	


Amusing exercise: generalize Karatsuba to do 5 size ���

n/3 subproblems → Θ(n1.46…)	


Best known: 	

Θ(n log n loglog n)	



"Fast Fourier Transform"	


but mostly unused in practice (unless you need really big 
numbers - a billion digits of π, say)	



High precision arithmetic IS important for crypto	
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Recurrences 

Above: Where they come ���
from, how to find them���

	



Next: how to solve them	
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mergesort (review) 

Mergesort: (recursively) sort 2 half-lists, then 
merge results.	


	


T(n) = 2T(n/2)+cn,  n≥2	


T(1) = 0	



Solution: Θ(n log n) ���
(details later)	
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Lo
g 

n 
le

ve
ls
	



O(n) ���
work���
per���
level	



now!	





Solve:  T(1) = c 
 T(n) = 2 T(n/2) + cn 
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Level 	

Num 	

Size 	

Work	


	

0 	

 	

1=20 	

n
	

cn	


	

1 	

2=21 	

n/2 	

2 c n/2	


	

2 	

4=22 	

n/4 	

4 c n/4	


	

… 	

… 	

… 	

	

…	


	

i 	

2i 	

n/2i 	

2i c n/2i	



	

… 	

… 	

… 	

	

…	


	

k-1 	

2k-1 	

n/2k-1 	

2k-1 c n/2k-1	



(add last col)	



Level	

 Num	

 Size	

 Work	



0	

 1 = 20	

 n	

 cn	



1	

 2 = 21	

 n/2	

 2cn/2	



2	

 4 = 22	

 n/4	

 4cn/4	



…	

 …	

 …	

 …	



i	

 2i	

 n/2i	

 2i c n/2i	



…	

 …	

 …	

 …	



k-1	

 2k-1	

	

 n/2k-1	

 2k-1 c n/2k-1	



k	

 2k 	

	

 n/2k = 1	

 2k T(1)	

n = 2k ; k = log2n	


	


Total Work:  c n (1+log2n) 	





Solve:  T(1) = c 
 T(n) = 4 T(n/2) + cn 
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.	

 .	

  .	


  .	

 .	

.	



.	

.	

.	



Level 	

Num 	

Size 	

Work	


	

0 	

1=40 	

n 	

cn	


	

1 	

4=41 	

n/2 	

4 c n/2	


	

2 	

16=42 	

n/4 	

16 c n/4	


	

… 	

… 	

… 	

	

…	


	

i 	

4i 	

n/2i 	

4i c n/2i	



	

… 	

… 	

… 	

	

…	


	

k-1 	

4k-1 	

n/2k-1 	

4k-1 c n/2k-1	



	

k 	

4k 	

n/2k=1 	

4k T(1)	



€ 

4 i cn / 2i = O(n2
i=0

k∑ )

Level	

 Num	

 Size	

 Work	



0	

 1 = 40	

 n	

 cn	



1	

 4 = 41	

 n/2	

 4cn/2	



2	

 16 = 42	

 n/4	

 16cn/4	



…	

 …	

 …	

 …	



i	

 4i	

 n/2i	

 4i c n/2i	



…	

 …	

 …	

 …	



k-1	

 4k-1	

	

 n/2k-1	

 4k-1 c n/2k-1	



k	

 4k 	

	

 n/2k = 1	

 4k T(1)	

n = 2k ; k = log2n	


	


Total Work:  T(n) = 	

 4k = (22)k= 

(2k)2 = n2	





Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn 
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Level 	

Num 	

Size 	

Work	


	

0 	

1=30 	

n 	

cn	


	

1 	

3=31 	

n/2 	

3 c n/2	


	

2 	

9=32 	

n/4 	

9 c n/4	


	

… 	

… 	

… 	

	

…	


	

i 	

3i 	

n/2i 	

3i c n/2i	



	

… 	

… 	

… 	

	

…	


	

k-1 	

3k-1 	

n/2k-1 	

3k-1 c n/2k-1	



	

k 	

3k 	

n/2k=1 	

3k T(1)	



.	

 .	

  .	


  .	

 .	

.	



.	

.	

.	



n = 2k ; k = log2n	


	


Total Work:  T(n) = 	

 ∑ =

k
i

ii /cn0 23

Level	

 Num	

 Size	

 Work	



0	

 1 = 30	

 n	

 cn	



1	

 3 = 31	

 n/2	

 3cn/2	



2	

 9 = 32	

 n/4	

 9cn/4	



…	

 …	

 …	

 …	



i	

 3i	

 n/2i	

 3i c n/2i	



…	

 …	

 …	

 …	



k-1	

 3k-1	

	

 n/2k-1	

 3k-1 c n/2k-1	



k	

 3k 	

	

 n/2k = 1	

 3k T(1)	





a useful identity 

Theorem:	


1 + x + x2 + x3 + … + xk  =  (xk+1-1)/(x-1)	



proof:	


      y 	

= 1 + x + x2 + x3 + … + xk	



    xy 	

=       x + x2 + x3 + … + xk + xk+1	



  xy-y	

=  xk+1 - 1	


y(x-1)	

=  xk+1 - 1	


      y 	

= (xk+1-1)/(x-1)	
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Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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= 3i cn / 2i
i=0

k
∑

= cn 3i / 2i
i=0

k
∑

= cn 3
2( )

i

i=0

k
∑

= cn
3
2( )

k+1
−1

3
2( )−1

)n(T



Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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cn
3
2( )

k+1
−1

3
2( )−1

= 2cn 3
2( )

k+1
−1( )

< 2cn 3
2( )

k+1

= 3cn 3
2( )

k

= 3cn 3
k

2k



Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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€ 

alogb n

= blogb a( )
logb n

= blogb n( )logb a

= n logb a

3cn 3
k

2k
= 3cn 3

log2 n

2
log2 n

= 3cn 3
log2 n

n
= 3c3log2 n

= 3c n log2 3( )
=O n1.585...( )



divide and conquer – master recurrence 

T(n) = aT(n/b)+cnk for n > b then	


	



a > bk  ⇒ T(n) = 	

 	

[many subprobs → leaves dominate]	



	


a < bk  ⇒ T(n) = Θ(nk)	

 	

[few subprobs → top level dominates]	



	



a = bk  ⇒ T(n) = Θ (nk log n) 	

[balanced → all log n levels contribute]	



	


Fine print:  ���

a ≥ 1; b > 1; c, d, k ≥ 0; T(1) = d; n = bt for some t > 0; ���
a, b, k, t integers. True even if it is ⎡n/b⎤ instead of n/b.	
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)( log abnΘ



master recurrence: proof sketch 

Expand recurrence as in earlier examples, to get���
	



  T(n) = nh ( d + c S ) ���
	


where  h = logb(a) (and nh = number of tree leaves) and                      , 

where x = bk/a.  	



If c = 0 the sum S is irrelevant, and T(n) = O(nh): all work happens in the 
base cases, of which there are nh, one for each leaf in the recursion tree. 	



If c > 0, then the sum matters, and splits into 3 cases (like previous slide):  	



if x < 1, then S < x/(1-x) = O(1).   	

[S is the first log n terms of the 
	

infinite series with that sum.]  	



if x = 1, then S = logb(n) = O(log n).    	

[All terms in the sum are 1 and 
	

there are that many terms.]  	



if x > 1, then S = x • (x1+log
b
(n)-1)/(x-1). 	

[And after some algebra, ���

	

nh * S = O(nk).]	
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S = x j
j=1

logbn∑



Example: ���
���

Matrix Multiplication –���
���

Strassen’s Method	
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Multiplying Matrices	



	


	


	


	


	


	


n3 multiplications,  n3-n2 additions	



!
!
!
!

"

#

$
$
$
$

%

&

•

!
!
!
!

"

#

$
$
$
$

%

&

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

!
!
!
!

"

#

$
$
$
$

%

&

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa
babababababababababababa
babababababababababababa
babababababababababababa





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Simple Matrix Multiply	



for i = 1 to n	


for j = I to n	



C[i,j] = 0	


for k = 1 to n	



C[i,j] = C[i,j] + A[i,k] * B[k,j]	



n3 multiplications,  n3-n2 additions!
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Multiplying Matrices	



	


	


	


	


	


	


	



!
!
!
!

"

#

$
$
$
$

%

&

•

!
!
!
!

"

#

$
$
$
$

%

&

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

!
!
!
!

"

#

$
$
$
$

%

&

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa
babababababababababababa
babababababababababababa
babababababababababababa






72	





Multiplying Matrices	



	


	


	


	


	


	


	



!
!
!
!

"

#

$
$
$
$

%

&

•

!
!
!
!

"

#

$
$
$
$

%

&

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

!
!
!
!

"

#

$
$
$
$

%

&

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa
babababababababababababa
babababababababababababa
babababababababababababa





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Multiplying Matrices	



	


	


	


	


	


	


	



!
!
!
!

"

#

$
$
$
$

%

&

•

!
!
!
!

"

#

$
$
$
$

%

&

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb
bbbb
bbbb
bbbb

aaaa
aaaa
aaaa
aaaa

!
!
!
!

"

#

$
$
$
$

%

&

+++++++++

+++++++++

+++++++++

+++++++++

=

444434432442144142443243224212414144314321421141

443434332432143142343233223212314134313321321131

442434232422142142243223222212214124312321221121

441434132412141142143213221212114114311321121111

babababababababababababa
babababababababababababa
babababababababababababa
babababababababababababa






A11! A12!

A21!

A11B12+A12B22!

A22!

A11B11+A12B21!

B11! B12!

B21! B22!

A21B12+A22B22!A21B11+A22B21!
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Multiplying Matrices	



	


	


	


	


	


	


	



Counting arithmetic operations: ���
T(n) = 8T(n/2) + 4(n/2)2 = 8T(n/2) + n2	



A11! A12!

A21!

A11B12+A12B22!

A22!

A11B11+A12B21!

B11! B12!

B21! B22!

A21B12+A22B22!A21B11+A22B21!
=!
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Multiplying Matrices	



	

 	

   	

1 	

 	

 	

if n = 1	


T(n) = 	


	

 	

   	

8T(n/2) + n2   	

if n > 1	


	



By Master Recurrence, if ���

T(n) = aT(n/b)+cnk & a > bk then ���

T(n) =	

 )()()( 3loglog nnn 8a 2b Θ=Θ=Θ
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Strassen’s algorithm	



Strassen’s algorithm	


Multiply 2x2 matrices using 7 instead of 8 multiplications 
(and lots more than 4 additions)	


	



T(n)=7 T(n/2)+cn2	


7>22  so T(n) is  Θ(n       ) which is O(n2.81)	


	


Asymptotically fastest know algorithm uses O(n2.376) time	


not practical but Strassen’s may be practical provided 
calculations are exact and we stop recursion when matrix 
has size about 100 (maybe 10)	



log27!
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The algorithm	



P1 = A12(B11+ B21)        	

P2 = A21(B12+ B22) 	


P3 = (A11 - A12)B11       	

P4 = (A22 - A21)B22	


P5 = (A22 - A12)(B21 - B22)	


P6 = (A11 - A21)(B12 - B11)	


P7 = (A21 - A12)(B11+ B22)	


	


C11= P1+P3                   	

C12 = P2+P3+P6-P7	



C21= P1+P4+P5+P7      	

C22 = P2+P4	
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Another Example: 
Exponentiation 
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another d&c example: fast exponentiation 

Power(a,n)	


Input: integer n and number a	



Output: an	


	



Obvious algorithm	


n-1 multiplications	



	



Observation:	


if n is even, n = 2m, then an = am• am	
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divide & conquer algorithm 

Power(a,n)                                               	

 	

���
if n = 0 then return(1) 	


	

if n = 1 then return(a)                                                                                               
x ← Power(a,⎣n/2⎦) ���
x ← x•x	


	

if n is odd then	


	

 	

x ← a•x 	


	

return(x)	
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analysis 

Let M(n) be number of multiplies	



Worst-case ���
recurrence:	



By master theorem	



M(n) = O(log n) 	

(a=1, b=2, k=0)	



More precise analysis:	



M(n) = ⎣log2n⎦ + (# of 1’s in n’s binary representation) - 1	



Time is O(M(n)) if numbers < word size, else also 
depends on length, multiply algorithm	
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M (n) =
0 n ≤1

M n / 2"# $%( )+ 2 n >1

&
'
(

)(



a practical application - RSA 

Instead of an want an mod N	


ai+j mod N = ((ai mod N) • (aj mod N)) mod N	



same algorithm applies with each x • y replaced by  	


((x mod N) • (y mod N)) mod N	



	



In RSA cryptosystem (widely used for security)	


need an mod N where a, n, N each typically have 1024 bits	


Power: at most 2048 multiplies of 1024 bit numbers	



relatively easy for modern machines	



Naive algorithm:  21024 multiplies	
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d & c summary 

Idea:	


“Two halves are better than a whole”	



if the base algorithm has super-linear complexity.	



“If a little's good, then more's better”	


repeat above, recursively	



Analysis: recursion tree or Master Recurrence	


Applications: Many.  	



Binary Search, Merge Sort, (Quicksort), Closest 
Points, Integer Multiply, Exponentiation,…	
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