HW # |

Solutions are posted (UW netid required)
See grades via Catalyst/your “MyUW” page
Comments from Cyrus in Catalyst Dropbox

Papers ...

Everyone did well...

... except #5

If p(n) is a degree d polynomial with high-order
coefficient > 0, then p(n) = Q(n9)

d
p(n) = Z a;n'
i=0

d—1

> aqn® — Z la;|n
i=0
d—1

> agn® — Z la;|n?™! nz|
i=0

(o ())

> (ad/2) nd n > max (1,2 <; \%!) /ad>

CSE 421
Algorithms

Huffman Codes:
An Optimal Data Compression
Method

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23> 6; 3 bits/char: 300kbits

Why!

Storage, transmission vs 5 Ghz cpu

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23> 6; 3 bits/char: 300kbits

better: . <
2.52 bits/char 74%+2 +26%+4: 252kbits

Optimal?

’

\

E.
a
b
d
C
e
f

Why not:

00 00
Ol Ol

|0 10

1100 110
1101 1101
1110 1110

Data Compression

Binary character code (“code”)

each k-bit source string maps to unique code word
(e.g. k=8)
(13 ° ’»

compression’ alg: concatenate code words for
successive k-bit “characters” of source

Fixed/variable length codes

all code words equal length?

Prefix codes

no code word is prefix of another (unique decoding)

Prefix Codes = Trees

Greedy |dea #1

Put most frequent

under root, then recurse ...

a:45

Too greedy:

unbalanced tree
A5 + .16%2 + .13*3 ... = 2.34
not too bad, but imagine if all

freqs were ~1/6:
(1+2+3+4+5+5)/6=3.33

b:13

. ps with ~50%

8 each; recurse
(Shannon-Fano ¢oe

Again, not terrible
2*5+3*5 =25
But this tree

can easily be
improved! (How?)

a:45

f:5

b:13

c:12

d:16

e:9

Greedy idea #3

Bottom up: Group
least frequent letters
near bottom

P

c:12

f:5

c:12

b:13|(d:16] |a:45

(e)

A5 + 41*3 + .14%4 = 2.24 bits per char

Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq

while queue length > | do
remove smallest 2; call them x, y
make new node z from them, with f(z) = f(x) + f(y)
insert z into queue

Analysis: O(n) heap ops: O(n log n)
Goal: Minimize B(T)= Ecec freq(c)* depth(c)

Correctness: ??

Correctness Strategy

Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer,

Instead, show that greedy’s solution is as
good as any.

How: an exchange argument

Defn: A pair of leaves is an inversion if
depth(x) = depth(y)

and

freq(x) = freq(y)

Claim: If we flip an inversion, cost never increases. X

Why? All other things being equal, better to give more frequent
letter the shorter code.

(d(x)*(x) + d(y)*(y)) - (d(x)*f(y) + d(y)*f(x)) =
(d(x) - d(y)) * (f(x) - f(y)) = 0

l.e., non-negative cost savings.

Lemma |:
“Greedy Choice Property”

The 2 least frequent letters might
as well be siblings

Let a be least freq, b 2"
Let u, v be siblings at

max depth, f(u) =< f(v) (b)
(why must they exist?) (a) ’\
Then (a,u) and (b,v) are / ()

inversions. Swap them. Q} /v\ ()

Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet with
letter frequencies f(c) for c in C.

For any x, y in C, z not in C, let C' be the (n-1) letter
alphabet C - {x,y} U {z} and for all c in C' define

N (OF if c=X,y,z
f(c)‘{ f(x) +f(y), if c=z

Let T' be an optimal tree for (C',f").

Then
TI

N\ T L

X Y
7

is optimal for (C,f) among all trees having x,y as siblings

Proof:

B(T)=) _ d(c) f(c)

i

X Y
7

B(T)-B(T") = d(x)- (f(x)+ f(¥)—dp(2): [(2)

=(dr()+ 1) f(2)-dp(2)- 1'(2)

= 1'(2)

Suppose 1 '(having x & y as siblings) is better than T, i.e.

B(f) <B(T'). Collapse x & y to z, forming T ;as above:

B(T)-B(T) = f'(2)
Then:

B(T")=B(T) - f'(z) <B(T)- f'(z) = B(I")

Contradicting optimality of T"

Theorem:
Huffman gives optimal codes

Proof: induction on |C]|

Basis: n=1,2 — immediate

Induction: n>2
Let x,y be least frequent
Form C', f', & z, as above
By induction, T" is opt for (C',f)
By lemma 2, T —T is opt for (C,f) among trees

with x,y as siblings

By lemma |, some opt tree has X, y as siblings
Therefore, T is optimal.

Data Compression

Huffman is optimal.
BUT still might do better!
Huffman encodes fixed length blocks. What if we vary

them!?
Huffman uses one encoding throughout a file. What if
characteristics change!?

What if data has structure?! E.g. raster images, video,...

Huffman is lossless. Necessary?

LZWV, MPEG, ...

20

