HW # 1

Solutions are posted (UW netid required) See grades via Catalyst/your "MyUW" page Comments from Cyrus in Catalyst Dropbox Papers ...

Everyone did well... ... except #5 If p(n) is a degree d polynomial with high-order coefficient > 0, then $p(n) = \Omega(n^d)$

$$\begin{split} p(n) &= \sum_{i=0}^{d} a_{i} n^{i} \\ &\geq a_{d} n^{d} - \sum_{i=0}^{d-1} |a_{i}| n^{i} \\ &\geq a_{d} n^{d} - \sum_{i=0}^{d-1} |a_{i}| n^{d-1} \qquad n \geq 1 \\ &= \left(a_{d} - \left(\sum_{i=0}^{d-1} |a_{i}| \right) / n \right) n^{d} \\ &\geq (a_{d}/2) n^{d} \qquad n \geq \max\left(1, 2 \left(\sum_{i=1}^{d-1} |a_{i}| \right) / a_{d} \right) \end{split}$$

CSE 421 Algorithms

Huffman Codes: An Optimal Data Compression Method

Compression Example

a	45%	
b	13%	
С	12%	
d	6%	
е	9%	
f	5%	

100k file, 6 letter alphabet:

File Size: ASCII, 8 bits/char: 800kbits 2³ > 6; 3 bits/char: 300kbits

Why?

Storage, transmission vs 5 Ghz cpu

Compression Example

100k file, 6 letter alphabet:

File Size: ASCII, 8 bits/char: 800kbits 2³ > 6; 3 bits/char: 300kbits better: 2.52 bits/char 74%*2 +26%*4: 252kbits Optimal?

a	45%
b	13%
С	12%
d	 6%
е	9 %
f	5%

	E.g		Why not:	
	а	00	00	
	b	01	01	
)	d	10	10	
	С	1100	110	
	е	1101	101	
	f	1110	1110	

 $||0|||0 = cf or ec?_{5}$

Data Compression

Binary character code ("code")

each k-bit source string maps to unique code word (e.g. k=8)

"compression" alg: concatenate code words for successive k-bit "characters" of source

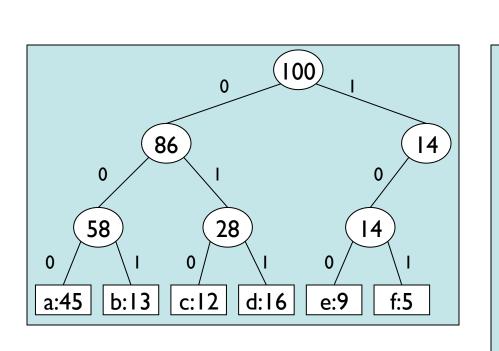
Fixed/variable length codes

all code words equal length?

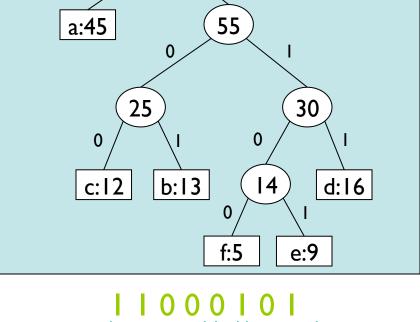
Prefix codes

no code word is prefix of another (unique decoding)

a	45%
b	3%
С	12%
d	6%
е	9%
f	5%



Prefix Codes = Trees



a

b

(100)

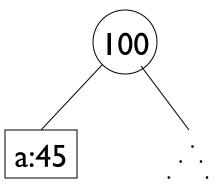
0

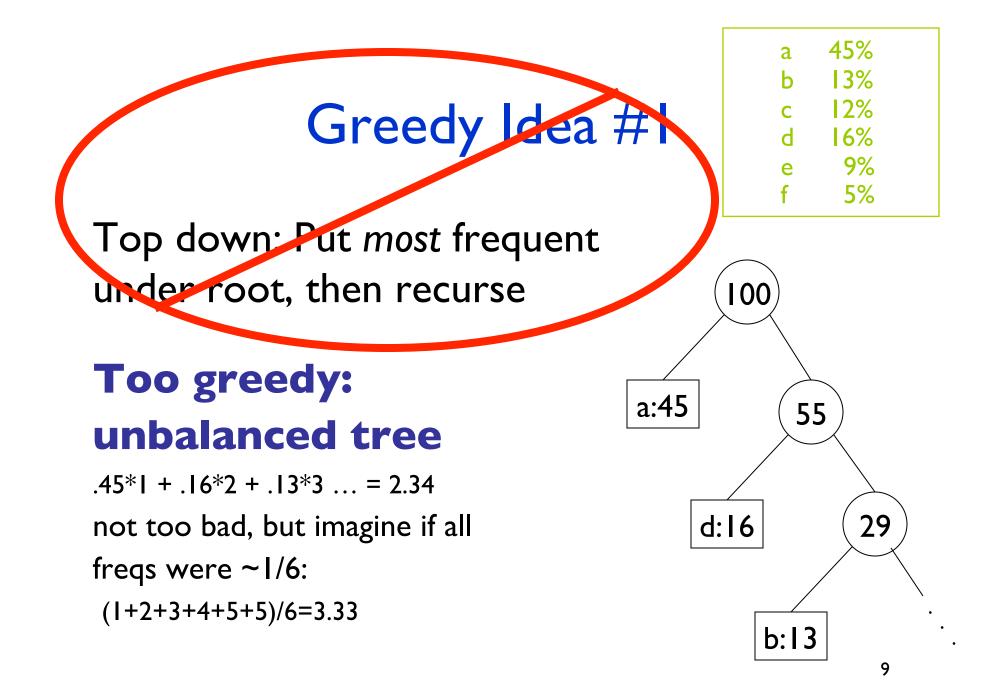
101000001 f a b

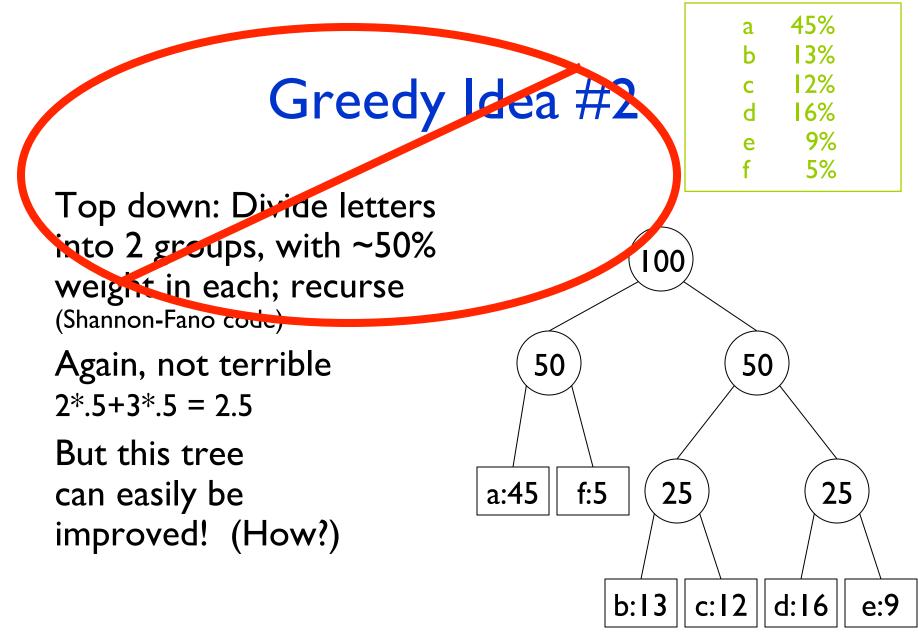
Greedy Idea #I

a	45%
b	13%
С	12%
d	6%
е	<mark>9</mark> %
f	5%

Put most frequent under root, then recurse ...



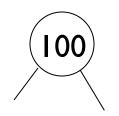


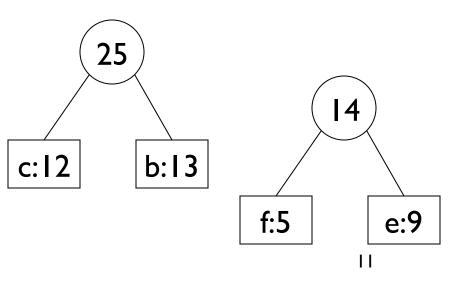


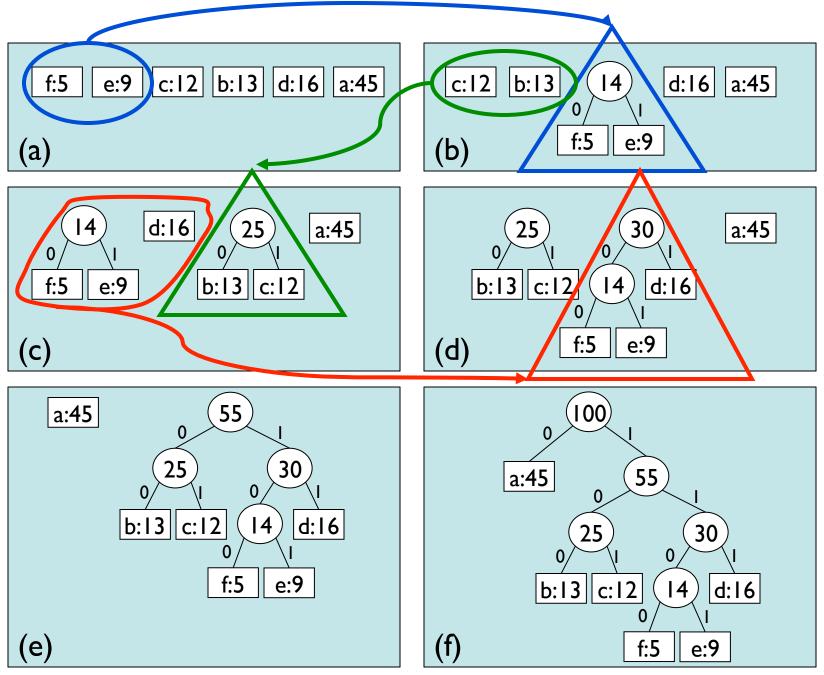
Greedy idea #3

a	45%
b	13%
С	12%
d	6%
e	9 %
f	5%

Bottom up: Group least frequent letters near bottom







.45*1 + .41*3 + .14*4 = 2.24 bits per char

Huffman's Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq while queue length > I do remove smallest 2; call them x, y make new node z from them, with f(z) = f(x) + f(y) insert z into queue

Analysis: O(n) heap ops: O(n log n)

Goal: Minimize $B(T) = \sum_{c \in C} \operatorname{freq}(c) * \operatorname{depth}(c)$ **Correctness:** ???

Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the *only* possible answer.

Instead, show that greedy's solution is as good as any.

How: an exchange argument

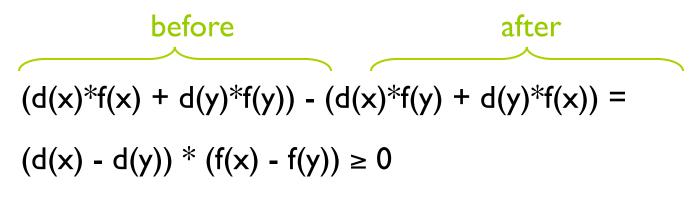
Defn: A pair of leaves is an inversion if depth(x) \geq depth(y) and freq(x) \geq freq(y)

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

y

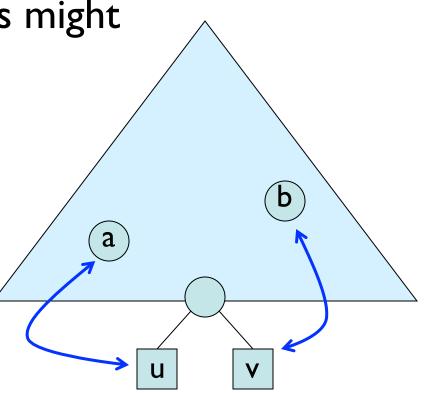
Χ



I.e., non-negative cost savings.

Lemma I: "Greedy Choice Property"

The 2 least frequent letters might as well be siblings Let a be least freq, b 2^{nd} Let u, v be siblings at max depth, f(u) \leq f(v) (why must they exist?) Then (a,u) and (b,v) are inversions. Swap them.



Lemma 2

- Let (C, f) be a problem instance: C an n-letter alphabet with letter frequencies f(c) for c in C.
- For any x, y in C, z not in C, let C' be the (n-1) letter alphabet C {x,y} \cup {z} and for all c in C' define

$$f'(c) = \begin{cases} f(c), & \text{if } c \neq x, y, z \\ f(x) + f(y), & \text{if } c = z \end{cases}$$

Let T' be an optimal tree for (C',f'). Then \land

T = T'

is optimal for (C,f) among all trees having x,y as siblings

Proof:

$$B(T) = \sum_{c \in C} d_T(c) \cdot f(c)$$

$$B(T) - B(T') = d_T(x) \cdot (f(x) + f(y)) - d_{T'}(z) \cdot f'(z)$$

$$= (d_{T'}(z) + 1) \cdot f'(z) - d_{T'}(z) \cdot f'(z)$$

$$= f'(z)$$

Suppose \hat{T} (having x & y as siblings) is better than T, i.e.

$$B(\hat{T}) < B(T)$$
. Collapse x & y to z, forming \hat{T}' ; as above:
 $B(\hat{T}) - B(\hat{T}') = f'(z)$

Then:

$$B(\hat{T}') = B(\hat{T}) - f'(z) < B(T) - f'(z) = B(T')$$

Contradicting optimality of T'

Theorem: Huffman gives optimal codes

Proof: induction on |C| Basis: n=1,2 – immediate Induction: n>2 Let x,y be least frequent Form C', f', & z, as above By induction, T' is opt for (C',f')By lemma 2, $T' \rightarrow T$ is opt for (C,f) among trees with x,y as siblings By lemma 1, some opt tree has x, y as siblings Therefore, T is optimal.

Data Compression

Huffman is optimal.

BUT still might do better!

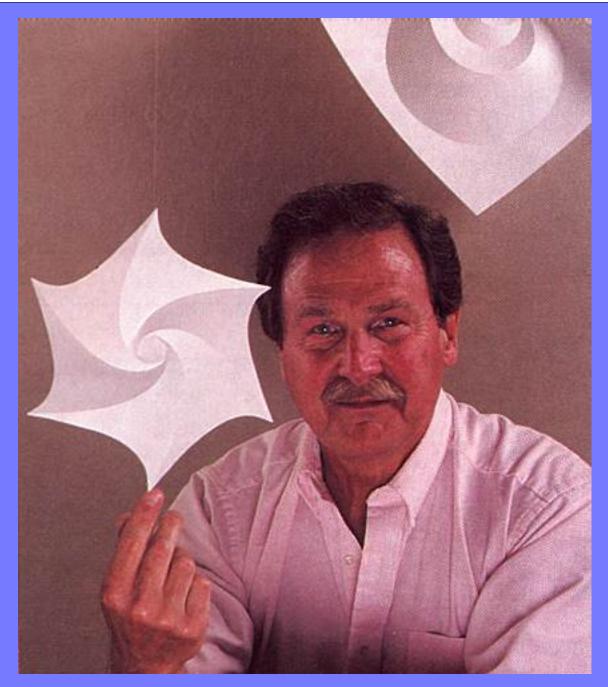
Huffman encodes fixed length blocks. What if we vary them?

Huffman uses one encoding throughout a file. What if characteristics change?

What if data has structure? E.g. raster images, video,...

Huffman is lossless. Necessary?

LZW, MPEG, ...



David A. Huffman, 1925-1999

