
HW # 1	

Solutions are posted (UW netid required)	

See grades via Catalyst/your “MyUW” page	

Comments from Cyrus in Catalyst Dropbox	

Papers …	

	

Everyone did well…	

… except #5	

1	

If p(n) is a degree d polynomial with high-order
coefficient > 0, then p(n) = Ω(nd) 	

	

n ≥ 1	

3	

CSE 421���
Algorithms	

Huffman Codes: ���
An Optimal Data Compression

Method	

4	

Compression Example	

100k file, 6 letter alphabet:	

	

File Size:	

ASCII, 8 bits/char: 800kbits	

23 > 6; 3 bits/char: 300kbits	

	

	

Why?	

Storage, transmission vs 5 Ghz cpu	

a 	

45%	

b 	

13%	

c 	

12%	

d 	

16%	

e 	

 9%	

f 	

 5%	

5	

Compression Example	

100k file, 6 letter alphabet:	

	

File Size:	

ASCII, 8 bits/char: 800kbits	

23 > 6; 3 bits/char: 300kbits	

better: ���
2.52 bits/char 74%*2 +26%*4: 252kbits	

Optimal?	

	

a 	

45%	

b 	

13%	

c 	

12%	

d 	

16%	

e 	

 9%	

f 	

 5%	

E.g.:	

a 	

00	

b 	

01	

d 	

10	

c 	

1100	

e 	

1101	

f 	

1110	

Why not:	

00	

01	

10	

110	

1101	

1110	

1101110 = cf or ec?	

6	

Data Compression	

Binary character code (“code”)	

each k-bit source string maps to unique code word ���
(e.g. k=8)	

“compression” alg: concatenate code words for
successive k-bit “characters” of source	

Fixed/variable length codes	

all code words equal length?	

Prefix codes	

no code word is prefix of another (unique decoding)	

Prefix Codes = Trees	

f a b	

a 	

45%	

b 	

13%	

c 	

12%	

d 	

16%	

e 	

 9%	

f 	

 5%	

1 0 1 0 0 0 0 0 1	

 f a b	

100	

55	

a:45	

30	

f:5	

c:12	

25	

b:13	

 d:16	

14	

e:9	

0	

 1	

0	

 1	

0	

 1	

0	

 1	

0	

 1	

100	

86	

a:45	

14	

e:9	

b:13	

28	

c:12	

 d:16	

14	

f:5	

0	

 1	

0	

 1	

0	

 1	

0	

 1	

0	

 1	

58	

0	

1 1 0 0 0 1 0 1	

8	

Greedy Idea #1	

Put most frequent ���
under root, then recurse …	

a 	

45%	

b 	

13%	

c 	

12%	

d 	

16%	

e 	

 9%	

f 	

 5%	

a:45	

100	

 .	

 . .	

. .	

9	

Greedy Idea #1	

Top down: Put most frequent ���
under root, then recurse	

	

Too greedy: ���
unbalanced tree���
.45*1 + .16*2 + .13*3 … = 2.34 ���
not too bad, but imagine if all ���
freqs were ~1/6: ���
 (1+2+3+4+5+5)/6=3.33	

a:45	

100	

d:16	

55	

b:13	

29	

.	

 .	

 .	

a 	

45%	

b 	

13%	

c 	

12%	

d 	

16%	

e 	

 9%	

f 	

 5%	

10	

Greedy Idea #2	

Top down: Divide letters ���
into 2 groups, with ~50% ���
weight in each; recurse���
(Shannon-Fano code)	

Again, not terrible���
2*.5+3*.5 = 2.5	

But this tree ���
can easily be ���
improved! (How?)	

a 	

45%	

b 	

13%	

c 	

12%	

d 	

16%	

e 	

 9%	

f 	

 5%	

100	

50	

a:45	

50	

f:5	

b:13	

25	

c:12	

 d:16	

25	

e:9	

11	

Greedy idea #3	

Bottom up: Group ���
least frequent letters ���
near bottom	

100	

f:5	

14	

.	

 .	

 .	

e:9	

c:12	

25	

b:13	

 .	

 .	

.	

a 	

45%	

b 	

13%	

c 	

12%	

d 	

16%	

e 	

 9%	

f 	

 5%	

(b)	

a:45	

d:16	

c:12	

 b:13	

f:5	

14	

e:9	

0	

 1	

(a)	

a:45	

d:16	

c:12	

 b:13	

f:5	

 e:9	

(f)	

100	

55	

a:45	

30	

f:5	

b:13	

25	

c:12	

 d:16	

14	

e:9	

0	

 1	

0	

 1	

0	

 1	

0	

 1	

0	

 1	

(e)	

55	

a:45	

30	

f:5	

b:13	

25	

c:12	

 d:16	

14	

e:9	

0	

 1	

0	

 1	

0	

 1	

0	

 1	

(d)	

a:45	

30	

f:5	

b:13	

25	

c:12	

 d:16	

14	

e:9	

0	

 1	

0	

 1	

0	

 1	

(c)	

a:45	

d:16	

b:13	

25	

c:12	

0	

 1	

f:5	

14	

e:9	

0	

 1	

.45*1 + .41*3 + .14*4 = 2.24 bits per char	

13	

Huffman’s Algorithm (1952)	

Algorithm:	

	

insert node for each letter into priority queue by freq	

	

while queue length > 1 do	

	

 	

remove smallest 2; call them x, y	

	

 	

make new node z from them, with f(z) = f(x) + f(y)	

	

 	

insert z into queue	

Analysis: O(n) heap ops: O(n log n)	

Goal: Minimize	

Correctness: ???	

€

B(T) = freq(c)*depth(c)
c∈C∑

14	

Correctness Strategy	

Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer.	

	

Instead, show that greedy’s solution is as
good as any.	

	

How: an exchange argument	

Claim: If we flip an inversion, cost never increases.	

Why? All other things being equal, better to give more frequent
letter the shorter code.	

 before after	

	

	

	

I.e., non-negative cost savings.	

Defn: A pair of leaves is an inversion if 	

 depth(x) ≥ depth(y)	

and	

 freq(x) ≥ freq(y)	

(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =	

(d(x) - d(y)) * (f(x) - f(y)) ≥ 0	

x	

y	

16	

The 2 least frequent letters might ���
as well be siblings	

Let a be least freq, b 2nd	

Let u, v be siblings at ���
max depth, f(u) ≤ f(v) ���
(why must they exist?)	

Then (a,u) and (b,v) are ���
inversions. Swap them.	

	

Lemma 1: ���
“Greedy Choice Property”	

a	

v	

u	

b	

17	

Let (C, f) be a problem instance: C an n-letter alphabet with
letter frequencies f(c) for c in C.	

For any x, y in C, z not in C, let C ' be the (n-1) letter
alphabet C - {x,y} ∪ {z} and for all c in C ' define	

	

	

Let T ' be an optimal tree for (C ',f ').	

Then 	

	

	

	

is optimal for (C,f) among all trees having x,y as siblings	

Lemma 2	

€

f '(c) =
"

$
f(c), if c ≠ x,y,z
f(x) + f(y), if c = z

x	

 y	

z	

T	

=	

T '	

€

B(T) = dT (c)c∈C
∑ ⋅ f (c)

B(T) − B(T ') = dT (x) ⋅ (f (x) + f (y)) − dT ' (z) ⋅ f '(z)
= (dT ' (z) +1) ⋅ f '(z) − dT ' (z) ⋅ f '(z)
= f '(z)

Proof:	

	

	

	

	

	

	

	

Suppose (having x & y as siblings) is better than T, i.e. 	

	

	

 	

 Collapse x & y to z, forming ; as above:	

	

 	

Then:	

	

	

Contradicting optimality of T '	

	

'T̂

€

B(ˆ T)− B(ˆ T ') = f '(z)

B(ˆ T ') = B(ˆ T) − f '(z) < B(T) − f '(z) = B(T ')

T̂

€

B(ˆ T) < B(T).

x	

 y	

z	

T '	

19	

Theorem: ���
Huffman gives optimal codes	

Proof: induction on |C|	

Basis: n=1,2 – immediate	

Induction: n>2	

Let x,y be least frequent	

Form C´, f´, & z, as above	

By induction, T´ is opt for (C´,f´)	

By lemma 2, T´ →T is opt for (C,f) among trees ���
with x,y as siblings	

By lemma 1, some opt tree has x, y as siblings	

Therefore, T is optimal.	

20	

Data Compression	

Huffman is optimal.	

BUT still might do better!	

Huffman encodes fixed length blocks. What if we vary
them?	

Huffman uses one encoding throughout a file. What if
characteristics change?	

What if data has structure? E.g. raster images, video,…	

Huffman is lossless. Necessary?	

LZW, MPEG, …	

21	

David A. Huffman, 1925-1999	

22	

23	

