CSE 421: Review

Larry Ruzzo Winter 2012

Complexity, I

Asymptotic Analysis Best/average/**worst** cases Upper/Lower Bounds Big O, Theta, Omega Analysis methods loops recurrence relations common data structures, subroutines

Graph Algorithms

Graphs

- Representation (edge list/adjacency matrix)
- Breadth/depth first search
- Connected components
- Shortest paths/bipartitness/2-Colorability
- DAGS and topological ordering
- DFS/articulation points/biconnected components

Design Paradigms

Greedy

emphasis on correctness arguments, e.g. <u>exchange</u> Divide & Conquer

recursive solution, superlinear work, balanced subproblems, recurrence relations, solutions, Master Thm

Dynamic Programming

recursive solution, redundant subproblems, few

do all in careful order and tabulate; <u>OPT function</u> (usually far superior to "memoization")

Powerful Subproblems

Flow, Matching, Linear Programming

Examples

Greedy

- Interval Scheduling Problems (3)
- Huffman Codes

Examples where greedy fails (stamps/change, scheduling, knap, RNA,...)

Examples

Divide & Conquer

Merge sort

Closest pair of points

Integer multiplication (Karatsuba)

Powering

Examples

Dynamic programming Fibonacci Making change/Stamps, Knapsack Weighted Interval Scheduling RNA String Alignment

Examples & Concepts

Flow and matching

Residual graph, augmenting paths, max-flow/min-cut, Ford-Fulkerson and Edmonds-Karp algorithms, integrality, reducing bipartite matching to flow

Complexity, II

P vs NP

Big-O and poly vs exponential growth

Definition of NP – hints/certificates and verifiers

Example problems from slides, reading & hw

SAT, 3-SAT, circuit SAT, vertex cover, quadratic Diophantine equations, clique, independent set, TSP, Hamilton cycle, coloring, max cut, knapsack

 $P \subseteq NP \subseteq Exp$ (and worse)

Definition(s) of (polynomial time) reduction

SAT \leq_p IndpSet, Knap examples (how, why correct, why \leq_p , implications)

Definition of NP-completeness

NP-completeness proofs

2x, I.5x approximations to Euclidean TSP

And see how relevant it is to your daily life! Classic Nintendo Games are (NP-)Hard

Greg Aloupis^{*}

Erik D. Demaine[†] Alan Guo^{†‡}

March 9, 2012

Abstract

We prove NP-hardness results for five of Nintendo's largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to Super Mario Bros. 1, 3, Lost Levels, and Super Mario World; Donkey Kong Country 1– 3; all Legend of Zelda games except Zelda II: The Adventure of Link; all Metroid games; and all Pokémon role-playing games. For Mario and Donkey Kong, we show NP-completeness. In addition, we observe that several games in the Zelda series are **PSPACE-complete**.

Final Exam Mechanics

Closed book, 1 pg notes (8.5x11, 2 sides, handwritten)

(no bluebook needed; scratch paper may be handy; calculators unnecessary)

Comprehensive, w/ post-midterm bias

assigned reading

slides

homework & solutions

Some Typical Exam Questions

- Give O() bound on I7n*(n-3+logn), or on code {for i=1 ...}}
- True/False: If X is $O(n^2)$, then it's rarely more than $n^3 + 14$ steps.
- Explain why a given greedy alg is/isn't correct
- Give a run time recurrence for a recursive alg, or solve a simple one
- Simulate any of the algs we've studied
- Give an alg for problem X, maybe a variant of one we've studied, or prove it's in NP
- Understand parts of correctness proof for an algorithm or reduction Implications of NP-completeness
- Reductions
- NP-completeness proofs

