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Introduction to Algorithms 

Winter 2012 
 The Network Flow Problem 
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How much stuff can flow from s to t? 

The Network Flow Problem 
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4 Reference:  On the history of the transportation and maximum flow problems. 
Alexander Schrijver in Math Programming, 91: 3, 2002. 

Soviet Rail Network, 1955 



5 

Net Flow: Formal Definition 

Given: 
A digraph G = (V,E) 
Two vertices s,t in V 

(source & sink) 
A capacity c(u,v) ≥ 0 

for each (u,v) ∈ E 
(and c(u,v) = 0 for all non-
edges (u,v)) 

Find: 
A flow function f: V x V → R s.t., 
for all u,v: 

–  f(u,v) ≤ c(u,v)  [Capacity Constraint] 
–  f(u,v) = -f(v,u)  [Skew Symmetry] 
–  if u ≠ s,t, f(u,V) = 0  [Flow Conservation] 

 

Maximizing total flow |f| = f(s,V) 

! !" "= Xx Yy yxfYXf ),(),(
Notation: 
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f(s,u) = f(u,t) =  2 
f(u,s) = f(t,u) = -2  (Why?) 

f(s,t)  = -f(t,s) = 0  (In every flow function for this G.  Why?) 

Example: A Flow Function 

s u t 2/2 2/3 

022 =+!=+="= # )t,u(f)s,u(f)v,u(f)V,u(f Vv

flow/capacity, not 0.66... 
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Not shown: f(u,v) if ≤ 0 
Note:  max flow ≥ 4 since f is a flow, |f| = 4 

Example: A Flow Function 
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Max Flow via  
a Greedy Alg? 

While there is an  
s → t path in G 

Pick such a path, p 
Find cp, the min capacity 

of any edge in p 
Subtract cp from all 

capacities on p 
Delete edges of 

capacity 0 
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Max Flow via a Greedy Alg? 

This does NOT always find a max flow: 
If you pick  s →b →a →t  first, 
 
 
 
 
 
 
Flow stuck at 2.   But flow 3 possible. 

s 
1 a 

t 

b 

2 

1 
3 

2 
s 

1 a 
t 

b 1 
1 



12 

A Brief History of Flow 
# Year Discoverer(s) Bound 
1 1951 Dantzig O(n2mU) 
2 1955 Ford & Fulkerson O(nmU) 
3 1970 Dinitz; Edmonds & Karp O(nm2) 
4 1970 Dinitz O(n2m) 
5 1972 Edmonds & Karp; Dinitz O(m2 logU) 
6 1973 Dinitz;Gabow O(nm logU) 
7 1974 Karzanov O(n3) 
8 1977 Cherkassky O(n2 sqrt(m)) 
9 1980 Galil & Naamad O(nm log2 n) 

10 1983 Sleator & Tarjan O(nm log n) 
11 1986 Goldberg &Tarjan O(nm log (n2/m)) 
12 1987 Ahuja & Orlin O(nm + n2 log U) 
13 1987 Ahuja et al. O(nm log(n sqrt(log U)/(m+2)) 
14 1989 Cheriyan & Hagerup E(nm + n2 log2 n) 
15 1990 Cheriyan et al. O(n3/log n) 
16 1990 Alon O(nm + n8/3 log n) 
17 1992 King et al. O(nm + n2+ε) 
18 1993 Phillips & Westbrook O(nm(logm/n n + log2+ε n) 
19 1994 King et al. O(nm(logm/(n log n) n) 
20 1997 Goldberg & Rao O(m3/2 log(n2/m) log U) ; O(n2/3 m log(n2/m) logU) 

n = # of vertices 
m= # of edges 
U = Max capacity 
 
 
 
 
Source: Goldberg & Rao, 
FOCS ‘97 

… … … … 
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Residual Capacity 

The residual capacity (w.r.t. f) of (u,v) is  
  cf(u,v) = c(u,v) - f(u,v) 
E.g.: 
  cf(s,b) = 7;  
  cf(a,x) = 1;  
  cf(x,a) = 3;  
  cf(x,t)  = 0 (a saturated edge) 
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Residual Networks  
& Augmenting Paths 

The residual network (w.r.t. f) is the graph 
Gf = (V,Ef), where  
 

 Ef = { (u,v) | cf(u,v) > 0 } 
 
An augmenting path (w.r.t. f) is a simple 
s → t path in Gf. 
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A Residual Network 
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residual network: the graph 
Gf = (V,Ef), where  
Ef = { (u,v) | cf(u,v) > 0 } 
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An Augmenting Path 

4/5 

6 
7 

3/4 

1/3 
4 

1 
5 

3/3 

7 

1/6 1/4 
s 

a 

b 

c 

x 

y 

z 

t 

4 

3 

1 

1 

1 

6 
7 

1 

2 
4 

1 

5 

3 

7 

5 3 
s 

a 

b 

c 

x 

y 

z 

t 
1 

augmenting path: 
a simple s → t path in Gf. 
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Lemma 1 

If f admits an augmenting path p, then f is 
not maximal. 

 
Proof: “obvious” -- augment along p by cp, 

the min residual capacity of p’s edges. 
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Augmenting A Flow 
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Lemma 1’:  
Augmented Flows are Flows 

If f  is a flow & p an augmenting path of capacity cp, then f ’ 
is also a valid flow, where  
 
 
 
 
 
Proof:  

a)  Flow conservation  – easy 
b)  Skew symmetry  – easy 
c)  Capacity constraints  – pretty easy 
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Lma 1’: Augmented 
Flows are Flows 

f  a flow & p an aug path of cap cp, then f ’  also a valid flow.  
Proof (Capacity constraints): 

 (u,v), (v,u) not on path: no change 
 (u,v) on path:  

f ’(u,v) = f(u,v) + cp   
   ≤  f(u,v) + cf(u,v)   

          =  f(u,v) + c(u,v) - f(u,v)  
         =  c(u,v) 
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f ’ (v,u) =  f(v,u) - cp 
 <  f(v,u) 
 ≤  c(v,u) 

Residual Capacity: 
   0 < cp ≤ cf(u,v) = c(u,v) - f(u,v) 
Cap Constraints: 
  -c(v,u) ≤ f(u,v) ≤ c(u,v) 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 
 

Case 1: f(u,v) ≥ 0:  
 
 

Add forward flow 
 

Lemma 1’ Example—Case 1 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 

 

Case 2: f(u,v) ≤ -cp: 
f(v,u) = -f(u,v) ≥ cp  

 
Cancel/redirect  

reverse flow  
 

Lemma 1’ Example—Case 2 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 

 
Case 3: -cp < f(u,v) < 0: 
   
 
??? 

Lemma 1’ Example—Case 3 
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Let (u,v) be any edge in  
augmenting path.  Note  
cf(u,v) = c(u,v) – f(u,v) ≥ cp > 0 

 
Case 3: -cp <  f(u,v) < 0 

            cp > f(v,u) > 0:   
Both:  

cancel/redirect  
reverse flow  

and 
 add forward flow  

Lemma 1’ Example—Case 3 
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Ford-Fulkerson Method 

While Gf has an augmenting path, 
augment 

 
Questions: 

» Does it halt? 
» Does it find a maximum flow? 
» How fast? 
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Cuts 

A partition S,T of V is a cut if s ∈ S, t ∈ T. 
Capacity of cut S,T is !
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Lemma 2 

For any flow f and any cut S,T, 
the net flow across the cut equals the total 
flow, i.e., |f| = f(S,T), and    
the net flow across the cut cannot exceed the 
capacity of the cut, i.e. f(S,T) ≤ c(S,T) 

Corollary: 
Max flow ≤ Min cut  

1 s 

t 

1 
1 

1 
1 

Cut Cap  = 3 
Net Flow = 1 

Cut Cap  = 2 
Net Flow = 1 
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Lemma 2 

For any flow f and any cut S,T, 
net flow across cut = total flow ≤ cut capacity 

Proof: 
Track a flow unit. Starts at s, ends at t.  
crosses cut an odd # of times; net = 1. 
Last crossing uses a  
forward edge totaled  
in C(S,T) 
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Cut Cap  = 3 
Net Flow = 1 

Cut Cap  = 2 
Net Flow = 1 



30 

Max Flow / Min Cut Theorem 

For any flow f, the following are equivalent 
  (1) |f| = c(S,T) for some cut S,T (a min cut) 

 (2) f is a maximum flow 
 (3) f admits no augmenting path 

Proof: 
 (1) ⇒ (2): corollary to lemma 2 
 (2) ⇒ (3): contrapositive of lemma 1 
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(3) ⇒ (1) 
(no aug) ⇒ (cut) 

S = { u | ∃ an augmenting path wrt f from s to u } 
T = V - S;  s ∈ S, t ∈ T 
For any (u,v) in S × T, ∃ an augmenting path 

from s to u, but not to v. 
∴ (u,v) has 0 residual capacity: 

 (u,v) ∈ E ⇒ saturated  f(u,v) = c(u,v)  
 (v,u) ∈ E ⇒ no flow   f(u,v) = 0 = -f(v,u) 

This is true for every edge crossing the cut, i.e.  

s t 

S   T 

u v 
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Corollaries & Facts 

If Ford-Fulkerson terminates, then it’s 
found a max flow. 
It will terminate if c(e) integer or rational 
(but may not if they’re irrational). 

However, may take exponential time, 
even with integer capacities: 
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How to Make it Faster 

Many ways.  Three important ones: 
“Scaling” – do big edges first; see text.  

if C = max capacity,  T = O(m2log C) 

Preflow-Push – see text.  T = O(n3) 

Edmonds-Karp (next)  T = O(nm2) 



34 

Edmonds-Karp Algorithm 

Use a shortest augmenting path  
(via Breadth First Search in residual graph) 
 
Time: O(n m2) 
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BFS/Shortest Path Lemmas 

Distance from s is never reduced by: 
• Deleting an edge 

proof: no new (hence no shorter) path created 
• Adding an edge (u,v), provided v is nearer 

than u 
proof: BFS is unchanged, since v visited before 
(u,v) examined 

s 

v 

u 

a back edge 
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Lemma 3 

Let f be a flow, Gf the residual graph, and 
p a shortest augmenting path.  Then no 
vertex is closer to s after augmentation 
along p. 
 
Proof: Augmentation only deletes edges,  
adds back edges 



37 

Augmentation vs BFS 
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Theorem 2 

The Edmonds-Karp Algorithm performs  
O(mn) flow augmentations 

 
Proof:  

 {u,v} is critical on augmenting path p if it’s 
closest to s having min residual capacity. 
 Won’t be critical again until farther from s. 
 So each edge critical at most n times. 
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Augmentation vs BFS Level 
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Corollary 

Edmonds-Karp runs in O(nm2) 
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Flow Integrality Theorem 

If all capacities are integers 
» Some max flow has an integer value 
» Ford-Fulkerson method finds a max flow in 

which f(u,v) is an integer for all edges (u,v) 

t s 

0.5/1 

0.5/1 0.5/1 

0.5/1 

1/1 A valid flow,  
but unnecessary 
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Bipartite Maximum Matching 

Bipartite Graphs: 
•  G = (V,E) 
•  V = L ∪ R  (L ∩ R = ∅) 
•  E ⊆ L × R 

 
Matching:  
•  A set of edges M ⊆ E 

such that no two edges 
touch a common vertex 
 

Problem: 
•  Find a matching M of 

maximum size 
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Reducing Matching to Flow 

Given bipartite G, build 
flow network N as 
follows: 

•  Add source s, sink t 
•  Add edges s à L 
•  Add edges Rà t 
•  All edge capacities 1 
 
Theorem:  

Max flow iff  
max matching 

s t 
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Reducing Matching to Flow 

Theorem: Max matching size = max flow value 
 
 
 
 
 
 
M à f?  Easy – send flow only through M 
f à M?  Flow integrality Thm, + cap constraints 

s t 
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Notes on Matching  

•  Max Flow Algorithm is probably overly 
general here 

•  But most direct matching algorithms use 
"augmenting path" type ideas similar to 
that in max flow – See text & homework 

•  Time mn1/2 possible via Edmonds-Karp 
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7.12  Baseball Elimination 

Some slides by Kevin Wayne 
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Baseball Elimination 

 
Which teams have a chance of finishing the season with 
most wins?  

»  Montreal eliminated since it can finish with at most 80 wins, 
but Atlanta already has 83. 

»  wi + gi < wj   ⇒ team i eliminated. 
»  Only reason sports writers appear to be aware of. 
»  Sufficient, but not necessary! 

Team 
i 

Against = gij Wins 
wi 

To play 
gi 

Losses 
li Atl Phi NY Mon 

Montreal 77 3 82 1 2 0 - 
New York 78 6 78 6 0 - 0 

Philly 80 3 79 1 - 0 2 
Atlanta 83 8 71 - 1 6 1 
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Baseball Elimination 

 

Which teams have a chance of finishing the season with 
most wins?  

»  Philly can win 83, but still eliminated . . . 
»  If Atlanta loses a game, then some other team wins one. 

Remark. Depends on both how many games already 
won and left to play, and on whom they're against. 

Team 
i 

Against = gij Wins 
wi 

To play 
gi 

Losses 
li Atl Phi NY Mon 

Montreal 77 3 82 1 2 0 - 
New York 78 6 78 6 0 - 0 

Philly 80 3 79 1 - 0 2 
Atlanta 83 8 71 - 1 6 1 
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Baseball Elimination 

Baseball elimination problem. 
» Set of teams S. 
» Distinguished team s ∈ S. 
» Team x has won wx games already. 
» Teams x and y play each other gxy 

additional times. 
»  Is there any outcome of the remaining 

games in which team s finishes with the 
most (or tied for the most) wins? 
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Can team 3 finish with most wins? 
Assume team 3 wins all remaining games  ⇒  w3 + g3 wins.  
Divvy remaining games so that all teams have ≤  w3 + g3 wins. 

Baseball Elimination:  Max 
Flow Formulation 
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g24 = 7 ∞ w3 + g3  - w4 

team 4 can still 
win this many 
more games games left 

∞ 

game nodes team nodes 
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Theorem.  Team 3 is not eliminated iff max flow 
saturates all edges leaving source. 

Integrality ⇒ each remaining x-y game added to # wins for x or y. 
Capacity on (x, t) edges ensure no team wins too many games. 

 

Baseball Elimination:  Max 
Flow Formulation 
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Baseball Elimination:  
Explanation for Sports Writers 

 
 
Which teams have a chance of finishing the season with 
most wins?  

Detroit could finish season with 49 + 27 = 76 wins. 

Team 
i 

Against =gij Wins 
wi 

To play 
gi 

Losses 
li NY Bal Bos Tor 

Toronto 63 27 72 7 7 0 - 
Boston 69 27 66 8 2 - 0 

Baltimore 71 28 63 3 - 2 7 
NY 75 28 59 - 3 8 7 

Detroit 49 27 86 3 4 0 0 

Det 

- 
0 
4 
3 

- 

AL East:  August 30, 1996 
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Baseball Elimination:  
Explanation for Sports Writers 

 
 
 
 
Which teams could finish the season with most wins?  

Detroit could finish season with 49 + 27 = 76 wins. 
Certificate of elimination.  R = {NY, Bal, Bos, Tor} 

Have already won w(R) = 278 games. 
Must win at least r(R) = 27 more. 
Average team in R wins at least 305/4 > 76 games. 

Team 
i 

Against =gij Wins 
wi 

To play 
gi 

Losses 
li NY Bal Bos Tor 

Toronto 63 27 72 7 7 0 - 
Boston 69 27 66 8 2 - 0 

Baltimore 71 28 63 3 - 2 7 
NY 75 28 59 - 3 8 7 

Detroit 49 27 86 3 4 0 0 

Det 

- 
0 
4 
3 

- 
AL East:  August 30, 1996 
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Baseball Elimination:  
Explanation for Sports Writers 

Certificate of  
elimination 
 
 
If                                     then z eliminated (by subset T). 
 
Theorem.  [Hoffman-Rivlin 1967]  Team z is eliminated 
iff there exists a subset T* that eliminates z. 
 
Proof idea.  Let T* = teams on source side of min cut. 

  

! 

T " S, w(T ) := wi
i#T
$
# wins! " # 

, g(T ) := gx y
{x,y} "  T

$

# remaining games! " $ $ # $ $ 
,

    

! 

w(T )+ g(T )
| T |

LB on avg # games won! " # # $ # # 

> wz + gz



( 90  +  87  +  6  ) / 2  > 91, 
so the set T = {NY, Tor} 

proves Boston is eliminated. 

w l g NY Balt Tor Bos 
NY 90 11 - 1 6 4 
Baltimore 88 6 1 - 1 4 
Toronto 87 10 6 1 - 4 
Boston 79 12 4 4 4 - 

Note: T={NY,Tor, Balt} is 
NOT a certificate, since 

(90+88+87+8)/3 = 91 

Fig 7.21 Min cut ⇒ no flow of value g*, so Boston eliminated. 

g* = 1+6+1 = 8 
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Baseball Elimination:  
Explanation for Sports Writers 

Pf of theorem.  
Use max flow formulation, and consider min cut (A, B). 
Define T* = team nodes on source side of min cut. 
Observe x-y ∈ A iff both x ∈ T* and y ∈ T*. 

infinite capacity edges ensure if x-y ∈ A then x ∈ A and y ∈ A 
if x ∈ A and y ∈ A but x-y ∉ T*, then adding x-y to A decreases 
capacity of cut 
 

 

s 

y 

x t x-y g24 = 7 ∞ 
∞ 

wz + gz  - wx 

team x can still win this 
many more games 

games left 
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Baseball Elimination:  
Explanation for Sports Writers 

Pf of theorem.  
Use max flow formulation, and consider min cut (A, B). 
Define T* = team nodes on source side of min cut. 
Observe x-y ∈ A iff both x ∈ T* and y ∈ T*. 
  
 
 
 
 
 
Rearranging:   
 

g(S !{z}) > cap(A, B)

= g(S !{z})! g(T*)
capacity of game edges leaving A! "### $###

+ (wz + gz !wx )
x"T*
#

capacity of team edges leaving A! "### $###

= g(S !{z})! g(T*) ! w(T*) + |T* | (wz + gz )

! 

wz + gz <
w(T*)+ g(T*)

|T* |
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Matching & Baseball: Key Points 

Can (sometimes) take problems that seemingly 
have nothing to do with flow & reduce them to 
a flow problem 

How? Build a clever network; map allocation of 
stuff in original problem (match edges; wins) 
to allocation of flow in network.  Clever edge 
capacities constrain solution to mimic original 
problem in some way. Integrality useful. 
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Matching & Baseball: Key Points 

Furthermore, in the baseball example, min cut 
can be translated into a succinct certificate or 
proof of some property that is much more 
transparent than “see, I ran max-flow and it 
says flow must be less than g*”. 

These examples suggest why max flow is 
so important – it’s a very general  tool 
used in many other algorithms. 


