
CSE 421
Algorithms:

Divide and Conquer

	

Larry Ruzzo	

	

Thanks to Paul Beame, Kevin Wayne for some slides	

4	

algorithm design paradigms: divide and conquer

Outline:	

General Idea	

Review of Merge Sort	

Why does it work? 	

Importance of balance	

Importance of super-linear growth	

Some interesting applications	

Closest points	

Integer Multiplication	

Finding & Solving Recurrences	

5	

algorithm design techniques

Divide & Conquer	

Reduce problem to one or more sub-problems of
the same type	

Typically, each sub-problem is at most a constant
fraction of the size of the original problem	

Subproblems typically disjoint	

Often gives significant, usually polynomial, speedup	

Examples:	

Mergesort, Binary Search, Strassen’s Algorithm,
Quicksort (roughly)	

merge sort
	

MS(A: array[1..n]) returns array[1..n] {	

If(n=1) return A;	

New U:array[1:n/2] = MS(A[1..n/2]);	

New L:array[1:n/2] = MS(A[n/2+1..n]);	

Return(Merge(U,L));	

}	

	

Merge(U,L: array[1..n]) {	

New C: array[1..2n];	

a=1; b=1;	

For i = 1 to 2n 	

	
C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;	

Return C;	

}	

6	

A U C

L	

split sort merge	

why balanced subdivision?

Alternative "divide & conquer" algorithm:	

Sort n-1	

Sort last 1	

Merge them	

	

T(n) = T(n-1)+T(1)+3n for n ≥ 2	

T(1) = 0	

Solution: 3n + 3(n-1) + 3(n-2) … = Θ(n2)	

7	

Suppose we've already invented DumbSort,
taking time n2	

Try Just One Level of divide & conquer:	

DumbSort(first n/2 elements) 	

DumbSort(last n/2 elements)	

Merge results	

Time: 2 (n/2)2 + n = n2/2 + n ≪ n2	

Almost twice as fast!	

8	

divide & conquer – the key idea

D&C in a 	

nutshell	

9	

d&c approach, cont.

Moral 1: “two halves are better than a whole”	

	
Two problems of half size are better than one full-size
problem, even given O(n) overhead of recombining, since
the base algorithm has super-linear complexity.	

	

Moral 2: “If a little's good, then more's better”	

	
Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing. ���
Best is usually full recursion down to some small constant
size (balancing "work" vs "overhead").	

 In the limit: you’ve just rediscovered mergesort!	

d&c approach, cont.

Moral 3: unbalanced division less good:	

(.1n)2 + (.9n)2 + n = .82n2 + n	

The 18% savings compounds significantly if you carry recursion to
more levels, actually giving O(nlogn), but with a bigger constant.
So worth doing if you can’t get 50-50 split, but balanced is better
if you can.	

This is intuitively why Quicksort with random splitter is good –
badly unbalanced splits are rare, and not instantly fatal.	

(1)2 + (n-1)2 + n = n2 - 2n + 2 + n 	

Little improvement here. 	

10	

11	

mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then
merge results.	

	

T(n) = 2T(n/2)+cn, n≥2	

T(1) = 0	

Solution: Θ(n log n) ���
(details later)	
 Lo

g
n

le
ve

ls
	

O(n) ���
work���
per���
level	

 A Divide & Conquer Example:
Closest Pair of Points

12	

closest pair of points: non-geometric version

Given n points and arbitrary distances between them,
find the closest pair. (E.g., think of distance as airfare
– definitely not Euclidean distance!)	

	

	

	

	

	

Must look at all n choose 2 pairwise distances, else ���
any one you didn’t check might be the shortest. 	

Also true for Euclidean distance in 1-2 dimensions?	

(… and all the rest of the (n) edges…)	
2	

13	

closest pair of points: 1 dimensional version

Given n points on the real line, find the closest pair	

	

	

	

Closest pair is adjacent in ordered list	

Time O(n log n) to sort, if needed	

Plus O(n) to scan adjacent pairs	

Key point: do not need to calc distances between all

pairs: exploit geometry + ordering	

14	

closest pair of points: 2 dimensional version
Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.	

	

Fundamental geometric primitive.	

Graphics, computer vision, geographic information systems, molecular
modeling, air traffic control.	

Special case of nearest neighbor, Euclidean MST, Voronoi.	

	

	

Brute force. Check all pairs of points p and q with Θ(n2) comparisons.	

	

1-D version. O(n log n) easy if points are on a line.	

	

Assumption. No two points have same x coordinate.	

Just to simplify presentation	

fast closest pair inspired fast algorithms for these problems	

15	

closest pair of points. 2d, Euclidean distance: 1st try

Divide. Sub-divide region into 4 quadrants.	

	

16	

closest pair of points: 1st try

Divide. Sub-divide region into 4 quadrants.	

Obstacle. Impossible to ensure n/4 points in

each piece.	

	

	

17	

closest pair of points

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

	

	

18	

L	

closest pair of points

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

Conquer: find closest pair on each side, recursively.	

19	

12	

21	

L	

closest pair of points

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

Conquer: find closest pair on each side, recursively.	

Combine: find closest pair with one point in each side.	

Return best of 3 solutions.	

	

20	

12	

21	

8	

L	

seems ���
like ���
Θ(n2) ?	

closest pair of points

Find closest pair with one point in each side,
assuming distance < δ.	

21	

12	

21	

δ = min(12, 21)	

L	

closest pair of points

Find closest pair with one point in each side,
assuming distance < δ.	

Observation: suffices to consider points within δ of line L.	

22	

12	

21	

δ	

L	

δ = min(12, 21)	

closest pair of points

Find closest pair with one point in each side,
assuming distance < δ.	

Observation: suffices to consider points within δ of line L.	

Almost the one-D problem again: Sort points in 2δ-strip by
their y coordinate.	

23	

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)	

closest pair of points

Find closest pair with one point in each side,
assuming distance < δ.	

Observation: suffices to consider points within δ of line L.	

Almost the one-D problem again: Sort points in 2δ-strip by
their y coordinate. Only check pts within 8 in sorted list!	

24	

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)	

closest pair of points

Def. Let si have the ith smallest���
y-coordinate among points ���
in the 2δ-width-strip.	

Claim. If |i – j| > 8, then the ���
distance between si and sj ���
is > δ.	

Pf: No two points lie in the ���
same ½δ-by-½δ box: ���
	

	

	
so ≤ 8 boxes within +δ of y(si). 	
 25	

δ	

29	

30	

31	

28	

26	

25	

δ	

½δ	

½δ	

39	

i	

j	

27	

1
2
!

"
#
$

%
&
2

+
1
2
!

"
#
$

%
&
2

=
1
2
=

2
2
' 0.7 <1

closest pair algorithm

26	

Closest-Pair(p1, …, pn) {
 if(n <= ??) return ??

 Compute separation line L such that half the points
 are on one side and half on the other side.

 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)

 Delete all points further than δ from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + δ
 δ = min(δ, distance between p[i] and p[i+k]);
 k++;

 return δ.
}

closest pair of points: analysis

Analysis, I: Let D(n) be the number of pairwise distance
calculations in the Closest-Pair Algorithm when run on n ≥ 1
points	

	

	

	

	

BUT – that’s only the number of distance calculations	

	

What if we counted comparisons?	

28	

!

D(n) "
0 n =1

2D n /2() + 7n n >1

$
%

&
'
(

) D(n) = O(n logn)

closest pair of points: analysis

Analysis, II: Let C(n) be the number of comparisons between
coordinates/distances in the Closest-Pair Algorithm when run
on n ≥ 1 points	

	

	

	

	

Q. Can we achieve O(n log n)?	

	

A. Yes. Don't sort points from scratch each time.	

Sort by x at top level only.	

Each recursive call returns δ and list of all points sorted by y	

Sort by merging two pre-sorted lists.	

29	

!

T(n) " 2T n /2() + O(n) # T(n) = O(n logn)

!

C(n) "
0 n =1

2C n /2() + O(n logn) n >1

$
%

&
'
(

) C(n) = O(n log2 n)

Going From Code to Recurrence

30	

going from code to recurrence

Carefully define what you’re counting, and write it
down!	

“Let C(n) be the number of comparisons between sort keys
used by MergeSort when sorting a list of length n ≥ 1”	

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.	

Write Recurrence(s)	

31	

merge sort

MS(A: array[1..n]) returns array[1..n] {	

If(n=1) return A;	

New L:array[1:n/2] = MS(A[1..n/2]);	

New R:array[1:n/2] = MS(A[n/2+1..n]);	

Return(Merge(L,R));	

}	

Merge(A,B: array[1..n]) {	

New C: array[1..2n];	

a=1; b=1;	

For i = 1 to 2n {	

	
C[i] = “smaller of A[a], B[b] and a++ or b++”;	

Return C;	

}	

32	

	

Recursive
calls	

	

Base Case	

One���
Recursive	

Level	

Operations	

being 	

counted	

the recurrence
	

	

	

	

	

	

	

	

	

Total time: proportional to C(n)	

 (loops, copying data, parameter passing, etc.)	

33	

!

C(n) =
0 if n =1
2C(n /2) + (n "1) if n >1

$
%

One compare per
element added to
merged list, except
the last.	

Base case	

Recursive calls	

going from code to recurrence

Carefully define what you’re counting, and write it
down!	

“Let D(n) be the number of pairwise distance calculations���
 in the Closest-Pair Algorithm when run on n ≥ 1 points”	

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.	

Write Recurrence(s)	

34	

closest pair algorithm

35	

Closest-Pair(p1, …, pn) {
 if(n <= 1) return ∞

 Compute separation line L such that half the points
 are on one side and half on the other side.

 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)

 Delete all points further than δ from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + δ
 δ = min(δ, distance between p[i] and p[i+k]);
 k++;

 return δ.
}

Recursive calls (2)	

Basic operations at 	

this recursive level	

Basic operations:	

distance calcs	

2D(n / 2)	

O(n)	

0	
Base Case	

One ���
recursive ���

level	

closest pair of points: analysis

Analysis, I: Let D(n) be the number of pairwise distance
calculations in the Closest-Pair Algorithm when run on n ≥ 1
points	

	

	

	

	

BUT – that’s only the number of distance calculations	

	

What if we counted comparisons?	

36	

!

D(n) "
0 n =1

2D n /2() + 7n n >1

$
%

&
'
(

) D(n) = O(n logn)

going from code to recurrence

Carefully define what you’re counting, and write it
down!	

“Let D(n) be the number of comparisons between
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points”	

In code, clearly separate base case from recursive case,
highlight recursive calls, and operations being counted.	

Write Recurrence(s)	

37	

closest pair algorithm

38	

Closest-Pair(p1, …, pn) {
 if(n <= 1) return ∞

 Compute separation line L such that half the points
 are on one side and half on the other side.

 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)

 Delete all points further than δ from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + δ
 δ = min(δ, distance between p[i] and p[i+k]);
 k++;

 return δ.
}

O(n log n)	

2C(n / 2)	

O(n)	

O(n log n)	

O(n)	

Recursive calls (2)	

Basic operations at 	

this recursive level	

0	

1	

Basic operations:	

comparisons	

Base Case	

One ���
recursive ���

level	

closest pair of points: analysis

Analysis, II: Let C(n) be the number of comparisons of
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points	

	

	

	

	

Q. Can we achieve time O(n log n)?	

	

A. Yes. Don't sort points from scratch each time.	

Sort by x at top level only.	

Each recursive call returns δ and list of all points sorted by y	

Sort by merging two pre-sorted lists.	

39	

!

T(n) " 2T n /2() + O(n) # T(n) = O(n logn)

!

C(n) "
0 n =1

2C n /2() + O(n logn) n >1

$
%

&
'
(

) C(n) = O(n log2 n)

Integer Multiplication

40	

integer arithmetic

Add. Given two n-bit ���
integers a and b, ���
compute a + b.	

O(n) bit operations.	

	

Multiply. Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method: 	

Θ(n2) bit operations.	

41	

1	

0	
1	
1	
 1	

1	
1	
0	
 1	
+	

0	
1	
0	
 1	

1	
1	
1	

0	
1	
0	
 1	

0	
1	
1	
 1	

1	
0	
0	
 0	

1	
0	
1	
1	
1	

Add	

1	

1	

0	

0	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

1	

0	

1	

0	
0	
0	
0	
0	
0	
0	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
1	
0	
1	
1	

1	

0	

1	

1	

1	

1	

1	

0	

*	

Multiply	

0	
0	
0	
0	
0	
0	
0	
0	

integer arithmetic

Add. Given two n-bit ���
integers a and b, ���
compute a + b.	

O(n) bit operations.	

	

Multiply. Given two n-bit ���
integers a and b, ���
compute a × b. ���
The “grade school” method: 	

Θ(n2) bit operations.	

42	

1	

0	
1	
1	
 1	

1	
1	
0	
 1	
+	

0	
1	
0	
 1	

1	
1	
1	

0	
1	
0	
 1	

0	
1	
1	
 1	

1	
0	
0	
 0	

1	
0	
1	
1	
1	

Add	

1	

1	

0	

0	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

1	

0	

1	

0	
0	
0	
0	
0	
0	
0	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
1	
0	
1	
0	
1	

1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
1	
0	
1	
1	

1	

0	

1	

1	

1	

1	

1	

0	

*	

Multiply	

0	
0	
0	
0	
0	
0	
0	
0	

divide & conquer multiplication: warmup

To multiply two 2-digit integers:	

Multiply four 1-digit integers.	

Add, shift some 2-digit integers to obtain result.	

	

	

	

	

Same idea works for long integers –	

can split them into 4 half-sized ints	

	

	

	

	

	

	

43	

!

x = 10" x1 + x0
y = 10" y1 + y0

xy = 10" x1 + x0() 10" y1 + y0()
= 100 " x1y1 + 10" x1y0 + x0y1() + x0y0

5	

2	

4	

3	

0	
4	
4	
1	

0	
1	

8	
0	

5	
1	

2	
1	

x0⋅y0	

x0⋅y1	

x1⋅y0	

x1⋅y1	

x1 x0	

y1 y0	

divide & conquer multiplication: warmup

To multiply two n-bit integers:	

Multiply four ½n-bit integers.	

Add two ½n-bit integers, and shift to obtain result.	

	

	

	

	

	

	

44	

!

T(n) = 4T n /2()
recursive calls
! " # $ #

 + "(n)
add, shift
! " $ # T(n) ="(n2)

!

x = 2n / 2 " x1 + x0

y = 2n / 2 " y1 + y0

xy = 2n / 2 " x1 + x0() 2n / 2 " y1 + y0()
= 2n " x1y1 + 2n / 2 " x1y0 + x0y1() + x0y0

assumes n is a power of 2	

1	

1	

0	

0	

1	

1	

0	

1	

1	

1	

0	

1	

1	

1	

1	

0	

1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
1	
0	
1	
1	
0	

*	

1	
0	
0	
0	
0	
0	
1	
0	

1	
0	
0	
1	
0	
1	
0	
1	

1	
1	
0	
0	
0	
1	
0	
0	

1	
1	
0	
1	
1	
0	
1	
0	

x0⋅y0	

x0⋅y1	

x1⋅y0	

x1⋅y1	

x1 x0	

y1 y0	

key trick: 2 multiplies for the price of 1:

45	

!

x = 2n / 2 " x1 + x0

y = 2n / 2 " y1 + y0

xy = 2n / 2 " x1 + x0() 2n / 2 " y1 + y0()
= 2n " x1y1 + 2n / 2 " x1y0 + x0y1() + x0y0

!

" = x1 + x0

= y1 + y0

"# = x1 + x0() y1 + y0()
= x1y1 + x1y0 + x0y1() + x0y0

x1y0 + x0y1() = "# $ x1y1 $ x0y0

Well, ok, 4 for 3 is
more accurate…	

Karatsuba multiplication

To multiply two n-bit integers:	

Add two ½n bit integers.	

Multiply three ½n-bit integers.	

Add, subtract, and shift ½n-bit integers to obtain result.	

	

	

	

	

	

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n1.585) bit operations.	

	

46	

!

x = 2n / 2 " x1 + x0

y = 2n / 2 " y1 + y0

xy = 2n " x1y1 + 2n / 2 " x1y0 + x0 y1() + x0 y0

= 2n " x1y1 + 2n / 2 " (x1 + x0) (y1 + y0) # x1y1 # x0 y0() + x0 y0

!

T(n) " T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

! " # # # # # # # $ # # # # # # #
+ '(n)

add, subtract, shift
! " # $ #

Sloppy version : T(n) " 3T(n /2) + O(n)

(T(n) = O(n log 2 3) = O(n1.585)

A	
 B	
 C	
A	
 C	

multiplication – the bottom line

Naïve: 	
 	
Θ(n2)	

Karatsuba: 	
Θ(n1.59…)	

Amusing exercise: generalize Karatsuba to do 5 size ���

n/3 subproblems → Θ(n1.46…)	

Best known: 	
Θ(n log n loglog n)	

"Fast Fourier Transform"	

but mostly unused in practice (unless you need really big
numbers - a billion digits of π, say)	

High precision arithmetic IS important for crypto	

	

47	

d & c summary

Idea:	

“Two halves are better than a whole”	

if the base algorithm has super-linear complexity.	

“If a little's good, then more's better”	

repeat above, recursively	

Applications: Many. 	

Binary Search, Merge Sort, (Quicksort), Closest
points, Integer multiply,…	

48	

Recurrences

Above: Where they come ���
from, how to find them���

	

Next: how to solve them	

49	

mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then
merge results.	

	

T(n) = 2T(n/2)+cn, n≥2	

T(1) = 0	

Solution: Θ(n log n) ���
(details later)	

50	

Lo
g

n
le

ve
ls
	

O(n) ���
work���
per���
level	

now	

Solve: T(1) = c
 T(n) = 2 T(n/2) + cn

51	

Level 	
Num 	
Size 	
Work	

	
0 	
 	
1=20 	
n
	
cn	

	
1 	
2=21 	
n/2 	
2 c n/2	

	
2 	
4=22 	
n/4 	
4 c n/4	

	
… 	
… 	
… 	
	
…	

	
i 	
2i 	
n/2i 	
2i c n/2i	

	
… 	
… 	
… 	
	
…	

	
k-1 	
2k-1 	
n/2k-1 	
2k-1 c n/2k-1	

(add last col)	

Level	
 Num	
 Size	
 Work	

0	
 1 = 20	
 n	
 cn	

1	
 2 = 21	
 n/2	
 2cn/2	

2	
 4 = 22	
 n/4	
 4cn/4	

…	
 …	
 …	
 …	

i	
 2i	
 n/2i	
 2i c n/2i	

…	
 …	
 …	
 …	

k-1	
 2k-1	
	
 n/2k-1	
 2k-1 c n/2k-1	

k	
 2k 	
	
 n/2k = 1	
 2k T(1)	
n = 2k ; k = log2n	

	

Total Work: c n (1+log2n) 	

Solve: T(1) = c
 T(n) = 4 T(n/2) + cn

52	

.	
 .	
 .	

 .	
 .	
.	

.	
.	
.	

Level 	
Num 	
Size 	
Work	

	
0 	
1=40 	
n 	
cn	

	
1 	
4=41 	
n/2 	
4 c n/2	

	
2 	
16=42 	
n/4 	
16 c n/4	

	
… 	
… 	
… 	
	
…	

	
i 	
4i 	
n/2i 	
4i c n/2i	

	
… 	
… 	
… 	
	
…	

	
k-1 	
4k-1 	
n/2k-1 	
4k-1 c n/2k-1	

	
k 	
4k 	
n/2k=1 	
4k T(1)	

!

4 i cn / 2i = O(n2
i=0

k")

Level	
 Num	
 Size	
 Work	

0	
 1 = 40	
 n	
 cn	

1	
 4 = 41	
 n/2	
 4cn/2	

2	
 16 = 42	
 n/4	
 16cn/4	

…	
 …	
 …	
 …	

i	
 4i	
 n/2i	
 4i c n/2i	

…	
 …	
 …	
 …	

k-1	
 4k-1	
	
 n/2k-1	
 4k-1 c n/2k-1	

k	
 4k 	
	
 n/2k = 1	
 4k T(1)	
n = 2k ; k = log2n	

	

Total Work: T(n) = 	
 4k = (22)k=

(2k)2 = n2	

Solve: T(1) = c
 T(n) = 3 T(n/2) + cn

53	

Level 	
Num 	
Size 	
Work	

	
0 	
1=30 	
n 	
cn	

	
1 	
3=31 	
n/2 	
3 c n/2	

	
2 	
9=32 	
n/4 	
9 c n/4	

	
… 	
… 	
… 	
	
…	

	
i 	
3i 	
n/2i 	
3i c n/2i	

	
… 	
… 	
… 	
	
…	

	
k-1 	
3k-1 	
n/2k-1 	
3k-1 c n/2k-1	

	
k 	
3k 	
n/2k=1 	
3k T(1)	

.	
 .	
 .	

 .	
 .	
.	

.	
.	
.	

n = 2k ; k = log2n	

	

Total Work: T(n) = 	
 ! =

k
i

ii /cn0 23

Level	
 Num	
 Size	
 Work	

0	
 1 = 30	
 n	
 cn	

1	
 3 = 31	
 n/2	
 3cn/2	

2	
 9 = 32	
 n/4	
 9cn/4	

…	
 …	
 …	
 …	

i	
 3i	
 n/2i	
 3i c n/2i	

…	
 …	
 …	
 …	

k-1	
 3k-1	
	
 n/2k-1	
 3k-1 c n/2k-1	

k	
 3k 	
	
 n/2k = 1	
 3k T(1)	

a useful identity

Theorem:	

1 + x + x2 + x3 + … + xk = (xk+1-1)/(x-1)	

proof:	

 y 	
= 1 + x + x2 + x3 + … + xk	

 xy 	
= x + x2 + x3 + … + xk + xk+1	

 xy-y	
= xk+1 - 1	

y(x-1)	
= xk+1 - 1	

 y 	
= (xk+1-1)/(x-1)	

	

54	

Solve: T(1) = c
 T(n) = 3 T(n/2) + cn (cont.)

55	

= 3i cn / 2i
i=0

k
!

= cn 3i / 2i
i=0

k
!

= cn 3
2()

i

i=0

k
!

= cn
3
2()

k+1
"1

3
2()"1

)n(T

Solve: T(1) = c
 T(n) = 3 T(n/2) + cn (cont.)

56	

cn
3
2()

k+1
!1

3
2()!1

= 2cn 3
2()

k+1
!1()

< 2cn 3
2()

k+1

= 3cn 3
2()

k

= 3cn 3
k

2k

Solve: T(1) = c
 T(n) = 3 T(n/2) + cn (cont.)

57	

!

alogb n

= blogb a()
logb n

= blogb n()logb a

= n logb a

3cn 3
k

2k
= 3cn 3

log2 n

2
log2 n

= 3cn 3
log2 n

n
= 3c3log2 n

= 3c n log2 3()
=O n1.59...()

divide and conquer – master recurrence

T(n) = aT(n/b)+cnk for n > b then	

	

a > bk ⇒ T(n) = 	
 	
[many subprobs → leaves dominate]	

	

a < bk ⇒ T(n) = Θ(nk)	
 	
[few subprobs → top level dominates]	

	

a = bk ⇒ T(n) = Θ (nk log n) 	
[balanced → all log n levels contribute]	

	

Fine print: ���

a ≥ 1; b > 1; c, d, k ≥ 0; T(1) = d; n = bt for some t > 0; ���
a, b, k, t integers. True even if it is ⎡n/b⎤ instead of n/b.	

58	

)(log abn!

master recurrence: proof sketch

Expanding recurrence as in earlier examples, to get���
	

 T(n) = ng (d + c S) ���
	

where g = logb(a) and , where x = bk/a. 	

If c = 0 the sum S is irrelevant, and T(n) = O(ng): all the work happens in
the base cases, of which there are ng, one for each leaf in the recursion
tree. 	

If c > 0, then the sum matters, and splits into 3 cases (like previous slide): 	

if x < 1, then S < x/(1-x) = O(1). [S is just the first log n terms of the
infinite series with that sum]. 	

if x = 1, then S = logb(n) = O(log n). [all terms in the sum are 1 and
there are that many terms]. 	

if x > 1, then S = x * (x1+log
b
(n)-1)/(x-1). After some algebra, ���

ng * S = O(nk)	

59	

S = x j
j=1

logb n!

another d&c example: fast exponentiation

Power(a,n)	

Input: integer n and number a	

Output: an	

	

Obvious algorithm	

n-1 multiplications	

	

Observation:	

if n is even, n = 2m, then an = am• am	

60	

divide & conquer algorithm

Power(a,n) 	
 	
���
if n = 0 then return(1) 	

	
if n = 1 then return(a)
x ← Power(a,⎣n/2⎦) ���
x ← x•x	

	
if n is odd then	

	
 	
x ← a•x 	

	
return(x)	

61	

analysis

Let M(n) be number of multiplies	

Worst-case ���
recurrence:	

By master theorem	

M(n) = O(log n) 	
(a=1, b=2, k=0)	

More precise analysis:	

M(n) = ⎣log2n⎦ + (# of 1’s in n’s binary representation) - 1	

Time is O(M(n)) if numbers < word size, else also
depends on length, multiply algorithm	

62	

M (n) =
0 n !1

M n / 2"# $%()+ 2 n >1

&
'
(

)(

a practical application - RSA

Instead of an want an mod N	

ai+j mod N = ((ai mod N) • (aj mod N)) mod N	

same algorithm applies with each x • y replaced by 	

((x mod N) • (y mod N)) mod N	

	

In RSA cryptosystem (widely used for security)	

need an mod N where a, n, N each typically have 1024 bits	

Power: at most 2048 multiplies of 1024 bit numbers	

relatively easy for modern machines	

Naive algorithm: 21024 multiplies	

63	

d & c summary

Idea:	

“Two halves are better than a whole”	

if the base algorithm has super-linear complexity.	

“If a little's good, then more's better”	

repeat above, recursively	

Analysis: recursion tree or Master Recurrence	

Applications: Many. 	

Binary Search, Merge Sort, (Quicksort), Closest
points, Integer multiply, exponentiation,…	

64	

