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algorithm design paradigms: divide and conquer 

Outline:	

General Idea	


Review of Merge Sort	

Why does it work?  	


Importance of balance	


Importance of super-linear growth	


Some interesting applications	

Closest points	


Integer Multiplication	


Finding & Solving Recurrences	
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algorithm design techniques 

Divide & Conquer	

Reduce problem to one or more sub-problems of 
the same type	


Typically, each sub-problem is at most a constant 
fraction of the size of the original problem	


Subproblems typically disjoint	

Often gives significant, usually polynomial, speedup	

Examples:	


Mergesort, Binary Search, Strassen’s Algorithm, 
Quicksort (roughly)	




merge sort 
	

MS(A: array[1..n]) returns array[1..n] {	


If(n=1) return A;	

New U:array[1:n/2] = MS(A[1..n/2]);	

New L:array[1:n/2] = MS(A[n/2+1..n]);	

Return(Merge(U,L));	

}	


	

Merge(U,L: array[1..n]) {	


New C: array[1..2n];	

a=1; b=1;	

For i = 1 to 2n 	

	
C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;	


Return C;	

}	
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why balanced subdivision? 

Alternative "divide & conquer" algorithm:	

Sort n-1	

Sort last 1	


Merge them	

	

T(n) = T(n-1)+T(1)+3n   for n ≥ 2	


T(1) = 0	

Solution: 3n + 3(n-1) + 3(n-2) … =  Θ(n2)	
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Suppose we've already invented DumbSort, 
taking time n2	


Try Just One Level of divide & conquer:	


DumbSort(first  n/2 elements) 	


DumbSort(last  n/2 elements)	


Merge results	


Time:  2 (n/2)2 + n = n2/2 + n ≪ n2	


Almost twice as fast!	
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divide & conquer – the key idea 

D&C in a 	

nutshell	
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d&c approach, cont. 

Moral 1: “two halves are better than a whole”	

	
Two problems of half size are better than one full-size 
problem, even given O(n) overhead of recombining, since 
the base algorithm has super-linear complexity.	

	

Moral 2: “If a little's good, then more's better”	

	
Two levels of D&C would be almost 4 times faster, 3 levels 
almost 8, etc., even though overhead is growing. ���
Best is usually full recursion down to some small constant 
size (balancing "work" vs "overhead").	


    In the limit: you’ve just rediscovered mergesort!	




d&c approach, cont. 

Moral 3: unbalanced division less good:	

(.1n)2 + (.9n)2 + n = .82n2 + n	


The 18% savings compounds significantly if you carry recursion to 
more levels, actually giving O(nlogn), but with a bigger constant.  
So worth doing if you can’t get 50-50 split, but balanced is better 
if you can.	

This is intuitively why Quicksort with random splitter is good – 
badly unbalanced splits are rare, and not instantly fatal.	


(1)2 + (n-1)2 + n = n2 - 2n + 2 + n 	

Little improvement here.  	
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mergesort (review) 

Mergesort: (recursively) sort 2 half-lists, then 
merge results.	

	

T(n) = 2T(n/2)+cn,  n≥2	

T(1) = 0	


Solution: Θ(n log n) ���
(details later)	
 Lo
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 A Divide & Conquer Example: 
Closest Pair of Points 
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closest pair of points: non-geometric version 

Given n points and arbitrary distances between them, 
find the closest pair.  (E.g., think of distance as airfare 
– definitely not Euclidean distance!)	


	

	

	


	

	


Must look at all n choose 2 pairwise distances, else ���
any one you didn’t check might be the shortest.  	


Also true for Euclidean distance in 1-2 dimensions?	


(… and all the rest of the (n) edges…)	
2	
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closest pair of points: 1 dimensional version 

Given n points on the real line, find the closest pair	

	

	


	

Closest pair is adjacent in ordered list	

Time O(n log n) to sort, if needed	


Plus O(n) to scan adjacent pairs	

Key point: do not need to calc distances between all 

pairs: exploit geometry + ordering	
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closest pair of points: 2 dimensional version 
Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.	


	


Fundamental geometric primitive.	

Graphics, computer vision, geographic information systems, molecular 
modeling, air traffic control.	


Special case of nearest neighbor, Euclidean MST, Voronoi.	

	

	


Brute force.  Check all pairs of points p and q with Θ(n2) comparisons.	

	


1-D version.  O(n log n) easy if points are on a line.	

	


Assumption.  No two points have same x coordinate.	


Just to simplify presentation	


fast closest pair inspired fast algorithms for these problems	
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closest pair of points. 2d, Euclidean distance:  1st try 

Divide.  Sub-divide region into 4 quadrants.	
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closest pair of points:  1st try 

Divide.  Sub-divide region into 4 quadrants.	

Obstacle.  Impossible to ensure n/4 points in 

each piece.	
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closest pair of points 

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	
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L	




closest pair of points 

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

Conquer:  find closest pair on each side, recursively.	
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12	
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closest pair of points 

Algorithm.	

Divide: draw vertical line L with ≈ n/2 points on each side.	

Conquer:  find closest pair on each side, recursively.	


Combine:  find closest pair with one point in each side.	


Return best of 3 solutions.	
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seems ���
like ���
Θ(n2) ?	




closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	
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δ = min(12, 21)	


L	




closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	


Observation:  suffices to consider points within δ of line L.	
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closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	


Observation:  suffices to consider points within δ of line L.	


Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate.	
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closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	


Observation:  suffices to consider points within δ of line L.	


Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate. Only check pts within 8 in sorted list!	
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closest pair of points 

Def.  Let si have the ith smallest���
y-coordinate among points ���
in the 2δ-width-strip.	


Claim.  If |i – j| > 8, then the ���
distance between  si and sj ���
is > δ.	


Pf:  No two points lie in the ���
same ½δ-by-½δ box: ���
	

	


	
so ≤ 8 boxes within +δ of y(si). 	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= ??) return ?? 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 



closest pair of points:  analysis 

Analysis, I:  Let D(n) be the number of pairwise distance 
calculations in the Closest-Pair Algorithm when run on n ≥ 1 
points	


	

	

	


	

BUT – that’s only the number of distance calculations	

	


What if we counted comparisons?	
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closest pair of points:  analysis 

Analysis, II:  Let C(n) be the number of comparisons between 
coordinates/distances in the Closest-Pair Algorithm when run 
on n ≥ 1 points	


	

	


	


	

Q.  Can we achieve O(n log n)?	


	

A.  Yes. Don't sort points from scratch each time.	


Sort by x at top level only.	


Each recursive call returns δ and list of all points sorted by y	

Sort by merging two pre-sorted lists.	
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Going From Code to Recurrence 
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going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	


“Let C(n) be the number of comparisons between sort keys 
used by MergeSort when sorting a list of length n ≥ 1”	


In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	

Write Recurrence(s)	
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merge sort 

MS(A: array[1..n]) returns array[1..n] {	

If(n=1) return A;	

New L:array[1:n/2] = MS(A[1..n/2]);	

New R:array[1:n/2] = MS(A[n/2+1..n]);	

Return(Merge(L,R));	

}	


Merge(A,B: array[1..n]) {	

New C: array[1..2n];	

a=1; b=1;	

For i = 1 to 2n {	

	
C[i] = “smaller of A[a], B[b] and a++ or b++”;	


Return C;	

}	
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Recursive 
calls	


	


Base Case	


One���
Recursive	

Level	


Operations	

being 	

counted	




the recurrence 
	

	

	

	

	

	

	


	

	

Total time: proportional to C(n)	

  (loops, copying data, parameter passing, etc.)	
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! 

C(n) =
0 if n =1
2C(n /2) + (n "1) if n >1
# 
$ 
% 

One compare per 
element added to 
merged list, except 
the last.	


Base case	


Recursive calls	




going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	


“Let D(n) be the number of pairwise distance calculations���
  in the Closest-Pair Algorithm when run on n ≥ 1 points”	


In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	

Write Recurrence(s)	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= 1) return ∞ 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 

Recursive calls (2)	


Basic operations at 	

this recursive level	


Basic operations:	

distance calcs	


2D(n / 2)	


O(n)	


0	
Base Case	


One ���
recursive ���

level	




closest pair of points:  analysis 

Analysis, I:  Let D(n) be the number of pairwise distance 
calculations in the Closest-Pair Algorithm when run on n ≥ 1 
points	


	

	

	


	

BUT – that’s only the number of distance calculations	

	


What if we counted comparisons?	
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going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	


“Let D(n) be the number of comparisons between 
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points”	


In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	

Write Recurrence(s)	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= 1) return ∞ 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 

O(n log n)	


2C(n / 2)	


O(n)	


O(n log n)	


O(n)	


Recursive calls (2)	


Basic operations at 	

this recursive level	


0	


1	


Basic operations:	

comparisons	


Base Case	


One ���
recursive ���

level	




closest pair of points:  analysis 

Analysis, II:  Let C(n) be the number of comparisons of 
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points	


	

	


	


	

Q.  Can we achieve time O(n log n)?	


	

A.  Yes. Don't sort points from scratch each time.	


Sort by x at top level only.	


Each recursive call returns δ and list of all points sorted by y	

Sort by merging two pre-sorted lists.	
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Integer Multiplication 
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integer arithmetic 

Add.  Given two n-bit ���
integers a and b, ���
compute a + b.	


O(n) bit operations.	


	


Multiply.  Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  	


Θ(n2) bit operations.	
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integer arithmetic 

Add.  Given two n-bit ���
integers a and b, ���
compute a + b.	


O(n) bit operations.	


	


Multiply.  Given two n-bit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  	


Θ(n2) bit operations.	
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divide & conquer multiplication:  warmup 

To multiply two 2-digit integers:	

Multiply four 1-digit integers.	

Add, shift some 2-digit integers to obtain result.	


	

	

	


	

Same idea works for long integers –	

can split them into 4 half-sized ints	
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x = 10" x1  +  x0
y = 10" y1  +  y0

xy = 10" x1 + x0( ) 10" y1  + y0( )
= 100 " x1y1  + 10" x1y0 + x0y1( ) + x0y0
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divide & conquer multiplication:  warmup 

To multiply two n-bit integers:	

Multiply four ½n-bit integers.	

Add two ½n-bit integers, and shift to obtain result.	
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T(n)  =  4T n /2( )
recursive calls
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= 2n " x1y1  + 2n / 2 " x1y0 + x0y1( ) + x0y0
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key trick: 2 multiplies for the price of 1: 
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! 

x = 2n / 2 " x1  +  x0

y = 2n / 2 " y1  +  y0

xy = 2n / 2 " x1 + x0( ) 2n / 2 " y1  + y0( )
= 2n " x1y1  + 2n / 2 " x1y0 + x0y1( ) + x0y0

! 

" = x1  +  x0

# = y1  +  y0

"# = x1 + x0( ) y1  + y0( )
= x1y1  + x1y0 + x0y1( ) + x0y0

x1y0 + x0y1( ) = "# $ x1y1 $ x0y0

Well, ok, 4 for 3 is 
more accurate…	




Karatsuba multiplication 

To multiply two n-bit integers:	

Add two ½n bit integers.	


Multiply three ½n-bit integers.	


Add, subtract, and shift ½n-bit integers to obtain result.	


	


	

	


	

	

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit 
integers in O(n1.585) bit operations.	
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! 

x = 2n / 2 " x1  +  x0

y = 2n / 2 " y1  +  y0

xy = 2n " x1y1  + 2n / 2 " x1y0 + x0 y1( ) + x0 y0

= 2n " x1y1  + 2n / 2 " (x1 + x0 ) (y1 + y0 )  # x1y1 # x0 y0( ) + x0 y0

  

! 

T(n) " T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

! " # # # # # # # $ # # # # # # # 
+ '(n)

add, subtract, shift
! " # $ # 

Sloppy version :  T(n) " 3T(n /2) + O(n)

( T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A	
 B	
 C	
A	
 C	




multiplication – the bottom line 

Naïve: 	
 	
Θ(n2)	

Karatsuba: 	
Θ(n1.59…)	

Amusing exercise: generalize Karatsuba to do 5 size ���

n/3 subproblems → Θ(n1.46…)	

Best known: 	
Θ(n log n loglog n)	


"Fast Fourier Transform"	

but mostly unused in practice (unless you need really big 
numbers - a billion digits of π, say)	


High precision arithmetic IS important for crypto	
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d & c summary 

Idea:	

“Two halves are better than a whole”	


if the base algorithm has super-linear complexity.	


“If a little's good, then more's better”	

repeat above, recursively	


Applications: Many.  	

Binary Search, Merge Sort, (Quicksort), Closest 
points, Integer multiply,…	
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Recurrences 

Above: Where they come ���
from, how to find them���

	


Next: how to solve them	


49	




mergesort (review) 

Mergesort: (recursively) sort 2 half-lists, then 
merge results.	

	

T(n) = 2T(n/2)+cn,  n≥2	

T(1) = 0	


Solution: Θ(n log n) ���
(details later)	
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Solve:  T(1) = c 
 T(n) = 2 T(n/2) + cn 

51	


Level 	
Num 	
Size 	
Work	

	
0 	
 	
1=20 	
n
	
cn	

	
1 	
2=21 	
n/2 	
2 c n/2	

	
2 	
4=22 	
n/4 	
4 c n/4	

	
… 	
… 	
… 	
	
…	

	
i 	
2i 	
n/2i 	
2i c n/2i	


	
… 	
… 	
… 	
	
…	

	
k-1 	
2k-1 	
n/2k-1 	
2k-1 c n/2k-1	


(add last col)	


Level	
 Num	
 Size	
 Work	


0	
 1 = 20	
 n	
 cn	


1	
 2 = 21	
 n/2	
 2cn/2	


2	
 4 = 22	
 n/4	
 4cn/4	


…	
 …	
 …	
 …	


i	
 2i	
 n/2i	
 2i c n/2i	


…	
 …	
 …	
 …	


k-1	
 2k-1	
	
 n/2k-1	
 2k-1 c n/2k-1	


k	
 2k 	
	
 n/2k = 1	
 2k T(1)	
n = 2k ; k = log2n	

	

Total Work:  c n (1+log2n) 	




Solve:  T(1) = c 
 T(n) = 4 T(n/2) + cn 
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.	
 .	
  .	

  .	
 .	
.	


.	
.	
.	


Level 	
Num 	
Size 	
Work	

	
0 	
1=40 	
n 	
cn	

	
1 	
4=41 	
n/2 	
4 c n/2	

	
2 	
16=42 	
n/4 	
16 c n/4	

	
… 	
… 	
… 	
	
…	

	
i 	
4i 	
n/2i 	
4i c n/2i	


	
… 	
… 	
… 	
	
…	

	
k-1 	
4k-1 	
n/2k-1 	
4k-1 c n/2k-1	


	
k 	
4k 	
n/2k=1 	
4k T(1)	


! 

4 i cn / 2i = O(n2
i=0

k" )

Level	
 Num	
 Size	
 Work	


0	
 1 = 40	
 n	
 cn	


1	
 4 = 41	
 n/2	
 4cn/2	


2	
 16 = 42	
 n/4	
 16cn/4	


…	
 …	
 …	
 …	


i	
 4i	
 n/2i	
 4i c n/2i	


…	
 …	
 …	
 …	


k-1	
 4k-1	
	
 n/2k-1	
 4k-1 c n/2k-1	


k	
 4k 	
	
 n/2k = 1	
 4k T(1)	
n = 2k ; k = log2n	

	

Total Work:  T(n) = 	
 4k = (22)k= 

(2k)2 = n2	




Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn 
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Level 	
Num 	
Size 	
Work	

	
0 	
1=30 	
n 	
cn	

	
1 	
3=31 	
n/2 	
3 c n/2	

	
2 	
9=32 	
n/4 	
9 c n/4	

	
… 	
… 	
… 	
	
…	

	
i 	
3i 	
n/2i 	
3i c n/2i	


	
… 	
… 	
… 	
	
…	

	
k-1 	
3k-1 	
n/2k-1 	
3k-1 c n/2k-1	


	
k 	
3k 	
n/2k=1 	
3k T(1)	


.	
 .	
  .	

  .	
 .	
.	


.	
.	
.	


n = 2k ; k = log2n	

	

Total Work:  T(n) = 	
 ! =

k
i

ii /cn0 23

Level	
 Num	
 Size	
 Work	


0	
 1 = 30	
 n	
 cn	


1	
 3 = 31	
 n/2	
 3cn/2	


2	
 9 = 32	
 n/4	
 9cn/4	


…	
 …	
 …	
 …	


i	
 3i	
 n/2i	
 3i c n/2i	


…	
 …	
 …	
 …	


k-1	
 3k-1	
	
 n/2k-1	
 3k-1 c n/2k-1	


k	
 3k 	
	
 n/2k = 1	
 3k T(1)	




a useful identity 

Theorem:	

1 + x + x2 + x3 + … + xk  =  (xk+1-1)/(x-1)	


proof:	

      y 	
= 1 + x + x2 + x3 + … + xk	


    xy 	
=       x + x2 + x3 + … + xk + xk+1	


  xy-y	
=  xk+1 - 1	

y(x-1)	
=  xk+1 - 1	

      y 	
= (xk+1-1)/(x-1)	
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Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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= 3i cn / 2i
i=0

k
!

= cn 3i / 2i
i=0

k
!

= cn 3
2( )

i

i=0

k
!

= cn
3
2( )

k+1
"1

3
2( )"1

)n(T



Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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cn
3
2( )

k+1
!1

3
2( )!1

= 2cn 3
2( )

k+1
!1( )

< 2cn 3
2( )

k+1

= 3cn 3
2( )

k

= 3cn 3
k

2k



Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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! 

alogb n

= blogb a( )
logb n

= blogb n( )logb a

= n logb a

3cn 3
k

2k
= 3cn 3

log2 n

2
log2 n

= 3cn 3
log2 n

n
= 3c3log2 n

= 3c n log2 3( )
=O n1.59...( )



divide and conquer – master recurrence 

T(n) = aT(n/b)+cnk for n > b then	

	


a > bk  ⇒ T(n) = 	
 	
[many subprobs → leaves dominate]	


	

a < bk  ⇒ T(n) = Θ(nk)	
 	
[few subprobs → top level dominates]	


	


a = bk  ⇒ T(n) = Θ (nk log n) 	
[balanced → all log n levels contribute]	


	

Fine print:  ���

a ≥ 1; b > 1; c, d, k ≥ 0; T(1) = d; n = bt for some t > 0; ���
a, b, k, t integers. True even if it is ⎡n/b⎤ instead of n/b.	
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master recurrence: proof sketch 

Expanding recurrence as in earlier examples, to get���
	


  T(n) = ng ( d + c S ) ���
	

where  g = logb(a) and                      , where x = bk/a.  	


If c = 0 the sum S is irrelevant, and T(n) = O(ng): all the work happens in 
the base cases, of which there are ng, one for each leaf in the recursion 
tree. 	

If c > 0, then the sum matters, and splits into 3 cases (like previous slide):  	


if x < 1, then S < x/(1-x) = O(1).  [S is just the first log n terms of the 
infinite series with that sum].  	


if x = 1, then S = logb(n) = O(log n).   [all terms in the sum are 1 and 
there are that many terms].  	


if x > 1, then S = x * (x1+log
b
(n)-1)/(x-1).  After some algebra, ���

ng * S = O(nk)	
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S = x j
j=1

logb n!



another d&c example: fast exponentiation 

Power(a,n)	

Input: integer n and number a	


Output: an	

	


Obvious algorithm	

n-1 multiplications	


	


Observation:	

if n is even, n = 2m, then an = am• am	
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divide & conquer algorithm 

Power(a,n)                                               	
 	
���
if n = 0 then return(1) 	

	
if n = 1 then return(a)                                                                                               
x ← Power(a,⎣n/2⎦) ���
x ← x•x	

	
if n is odd then	

	
 	
x ← a•x 	

	
return(x)	
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analysis 

Let M(n) be number of multiplies	


Worst-case ���
recurrence:	


By master theorem	


M(n) = O(log n) 	
(a=1, b=2, k=0)	


More precise analysis:	


M(n) = ⎣log2n⎦ + (# of 1’s in n’s binary representation) - 1	


Time is O(M(n)) if numbers < word size, else also 
depends on length, multiply algorithm	
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M (n) =
0 n !1

M n / 2"# $%( )+ 2 n >1

&
'
(
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a practical application - RSA 

Instead of an want an mod N	

ai+j mod N = ((ai mod N) • (aj mod N)) mod N	


same algorithm applies with each x • y replaced by  	

((x mod N) • (y mod N)) mod N	


	


In RSA cryptosystem (widely used for security)	

need an mod N where a, n, N each typically have 1024 bits	

Power: at most 2048 multiplies of 1024 bit numbers	


relatively easy for modern machines	


Naive algorithm:  21024 multiplies	
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d & c summary 

Idea:	

“Two halves are better than a whole”	


if the base algorithm has super-linear complexity.	


“If a little's good, then more's better”	

repeat above, recursively	


Analysis: recursion tree or Master Recurrence	

Applications: Many.  	


Binary Search, Merge Sort, (Quicksort), Closest 
points, Integer multiply, exponentiation,…	
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