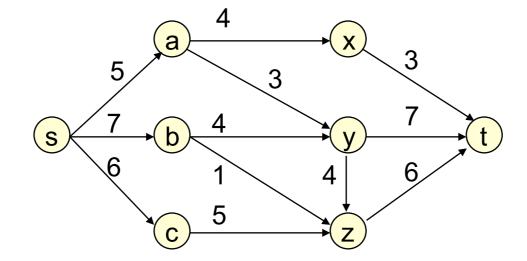
CSE 421 Introduction to Algorithms

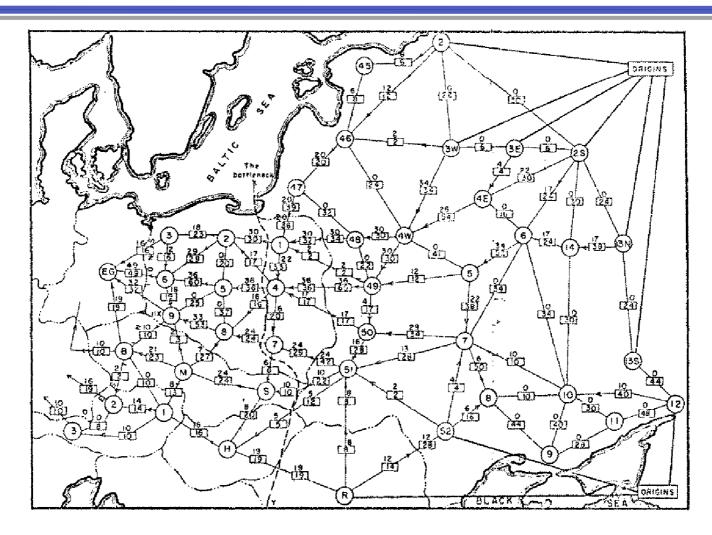
The Network Flow Problem

The Network Flow Problem



How much stuff can flow from s to t?

Soviet Rail Network, 1955



Reference: *On the history of the transportation and maximum flow problems.* Alexander Schrijver in Math Programming, 91: 3, 2002.

Net Flow: Formal Definition

Given:

A digraph G = (V,E)

Two vertices s,t in V (source & sink)

A capacity $c(u,v) \ge 0$ for each $(u,v) \in E$ (and c(u,v) = 0 for all nonedges (u,v))

Find:

A *flow function* f: $V \times V \rightarrow R$ s.t., for all u,v:

- $f(u,v) \le C(u,v)$ [Capacity Constraint]
- -f(u,v) = -f(v,u)

[Skew Symmetry]

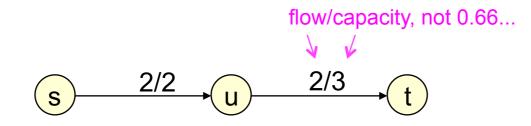
- if u ≠ s,t,
$$f(u,V) = 0$$
 [Flow Conservation]

Maximizing total flow |f| = f(s,V)

Notation:

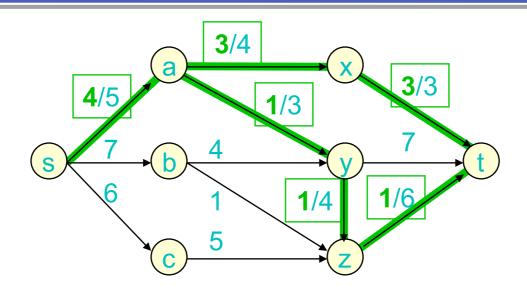
$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

Example: A Flow Function



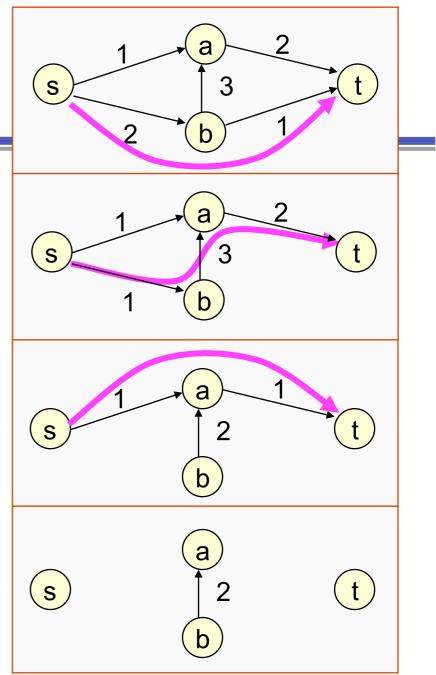
$$\begin{split} f(s,u) &= f(u,t) = 2 \\ f(u,s) &= f(t,u) = -2 \quad (Why?) \\ f(s,t) &= -f(t,s) = 0 \quad (In \text{ every flow function for this G. Why?}) \\ f(u,V) &= \sum_{V \in V} f(u,V) = f(u,s) + f(u,t) = -2 + 2 = 0 \end{split}$$

Example: A Flow Function



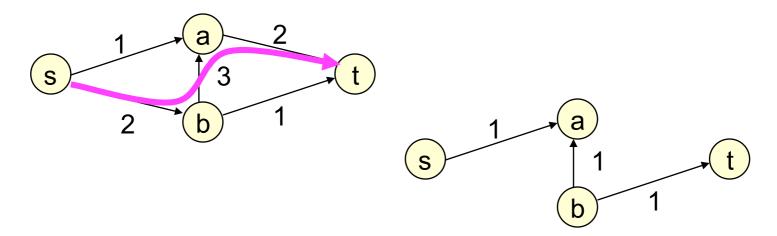
Not shown: f(u,v) if ≤ 0 Note: max flow ≥ 4 since f is a flow, |f| = 4 Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G Pick such a path, p Find c_{p} , the min capacity of any edge in p Subtract c_p from all capacities on p Delete edges of capacity 0



Max Flow via a Greedy Alg?

This does NOT always find a max flow: If you pick $s \rightarrow b \rightarrow a \rightarrow t$ first,



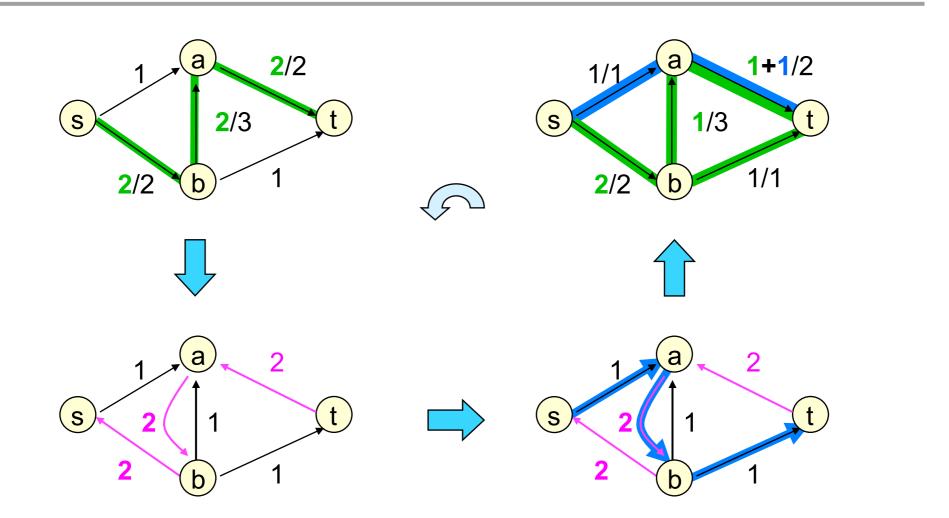
Flow stuck at 2. But flow 3 possible.

A Brief History of Flow

#	Year	Discoverer(s)	Bound	n = # of vertices
1	1951	Dantzig	O(n ² mC)	m= # of edges
2	1955	Ford & Fulkerson	O(nmC)	C = Max capacity
3	1970	Dinitz; Edmonds & Karp	O(nm ²)	
4	1970	Dinitz	$O(n^2 m)$	
5	1972	Edmonds & Karp; Dinitz	O(m ² log C)	Source: Goldberg & Rao,
6	1973	Dinitz;Gabow	O(nm log C)	FOCS '97
7	1974	Karzanov	$O(n_s^3)$	
8	1977	Cherkassky	O(n ² sqrt(m))	
9	1980	Galil & Naamad	O(nm log ² n)	
10	1983	Sleator & Tarjan	O(nm log n)	
11	1986	Goldberg &Tarjan	$O(nm \log (n^{2/}m))$	
12	1987	Ahuja & Orlin	$O(nm + n^2 \log C)$	
13	1987	Ahuja et al.	O(nm log(n sqrt(log C)/(m+2))	
14	1989	Cheriyan & Hagerup	E(nm + n ² log ² n)	
15	1990	Cheriyan et al.	O(n ³ /log n)	
16	1990	Alon	$O(nm + n_{1}^{8/3} \log n)$	
17	1992	King et al.	$O(nm + n^{2+\epsilon})$	
18	1993	Phillips & Westbrook	$O(nm(log_{m/n} n + log^{2+\epsilon} n))$	
19	1994	King et al.	$O(nm(log_{m/(n \log n)} n))$ $O(m^{3/2} log(n^2/m) log C); O(n^{2/3} m)$	0
20	1997	Goldberg & Rao	$O(m^{3/2} \log(n^2/m) \log C)$; $O(n^{2/3} m)$	log(n [∠] /m) logC)
• • •				

n = # of vertices m= # of edges C = Max capacity

Greed Revisited



Residual Capacity

The *residual capacity* (w.r.t. f) of (u,v) is $C_{f}(u,v) = C(u,v) - f(u,v)$ 3/4 E.g.: а **3**/3 4/5 1/3 $c_{f}(s,b) = 7;$ S $c_{f}(a,x) = 1;$ 1/6 1/4 6 5 $c_{f}(x,a) = 3;$ $C_f(x,t) = 0$ (a saturated edge)

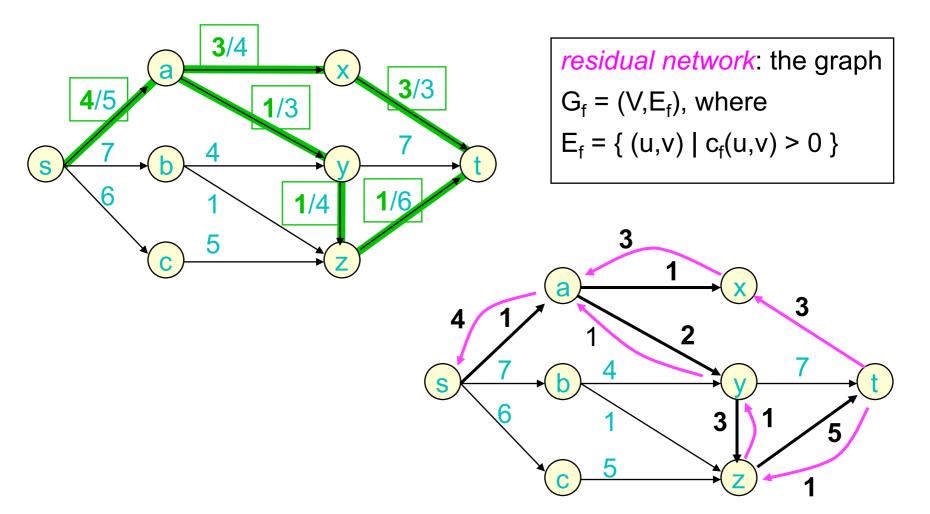
Residual Networks & Augmenting Paths

The *residual network* (w.r.t. f) is the graph $G_f = (V, E_f)$, where

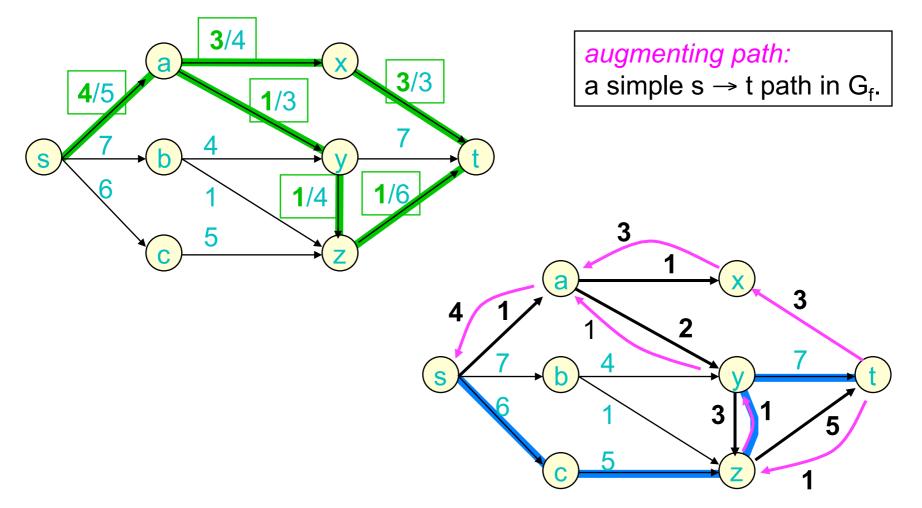
$$E_{f} = \{ (u,v) | c_{f}(u,v) > 0 \}$$

An *augmenting path* (w.r.t. f) is a simple $s \rightarrow t$ path in G_f .

A Residual Network



An Augmenting Path

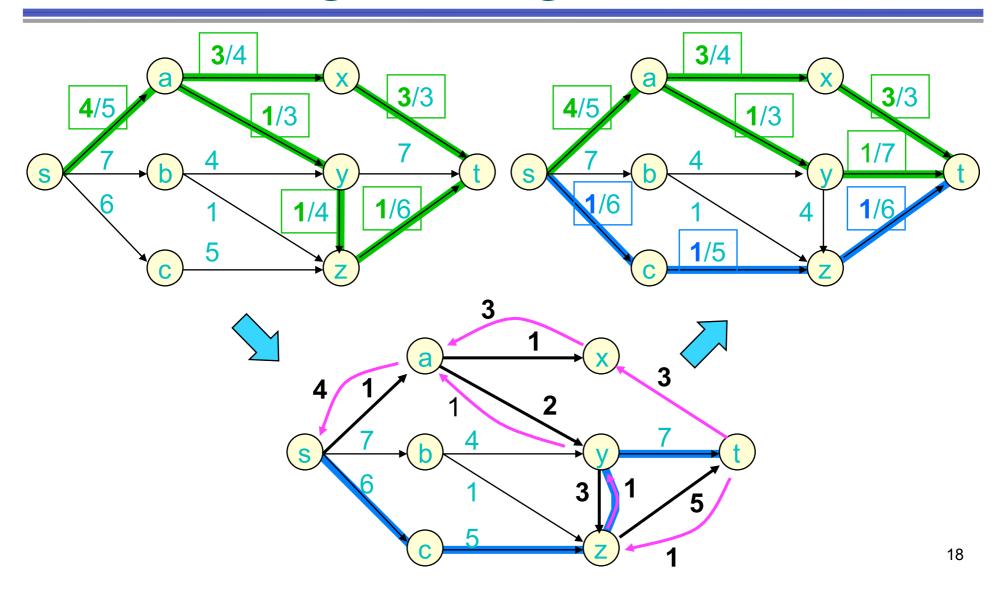


Lemma 1

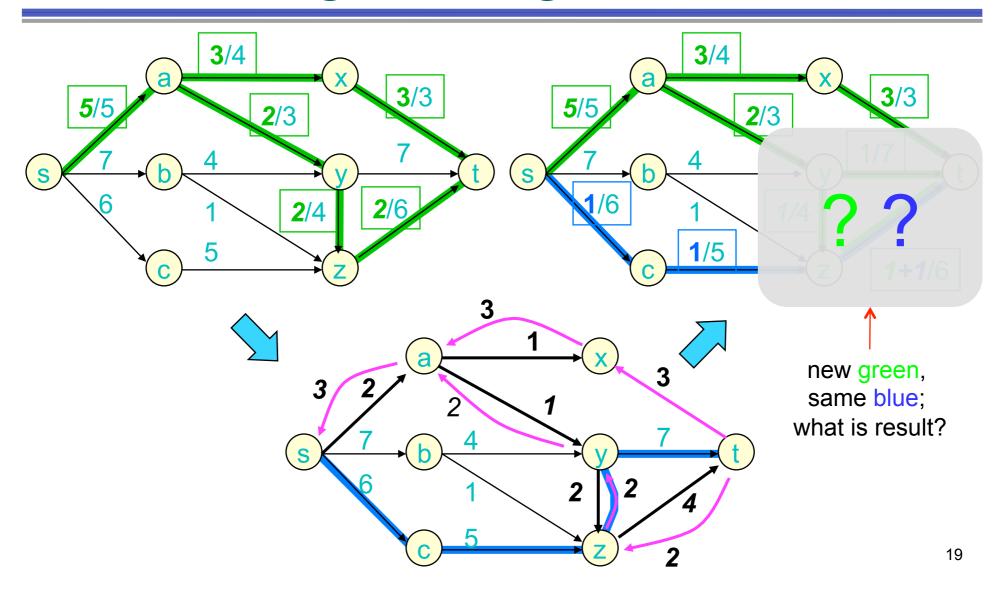
If f admits an augmenting path p, then f is not maximal.

Proof: "obvious" -- augment along p by c_p , the min residual capacity of p's edges.

Augmenting A Flow



Augmenting A Flow



Lemma 1': Augmented Flows are Flows

If *f* is a flow & *p* an augmenting path of capacity c_p , then *f* ' is also a valid flow, where

$$f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$$

Proof:

- a) Flow conservation easy
- b) Skew symmetry easy
- c) Capacity constraints pretty easy

Lma 1': Augmented Flows are Flows

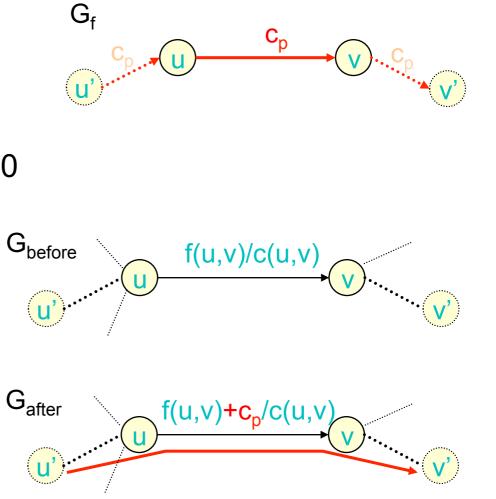
 $f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$

f a flow & p an aug path of cap c_p , then f' also a valid flow. Proof (Capacity constraints): (u,v), (v,u) not on path: no change (u,v) on path: **Residual Capacity:** $0 < c_p \le c_f(u,v) =$ $f'(u,v) = f(u,v) + c_n$ c(u,v) - f(u,v) $\leq f(u,v) + c_f(u,v)$ Cap Constraints: = f(u,v) + c(u,v) - f(u,v) $-c(v,u) \le f(u,v) \le c(u,v)$ = c(u,v) $f'(v,u) = f(v,u) - c_p$ < f(v, u) $\leq c(v,u)$ ED

Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$

Case 1: $f(u,v) \ge 0$:

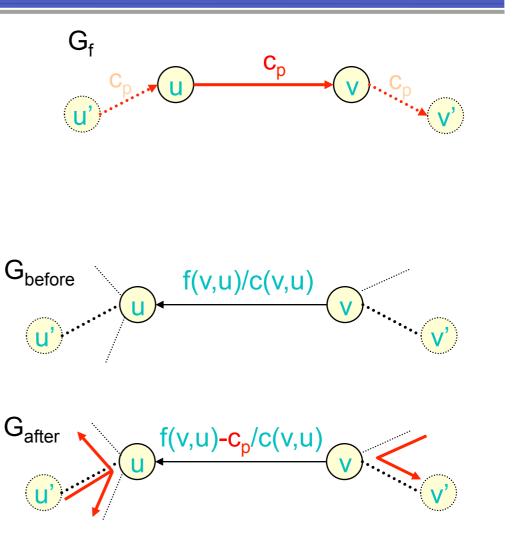
Add forward flow



Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$

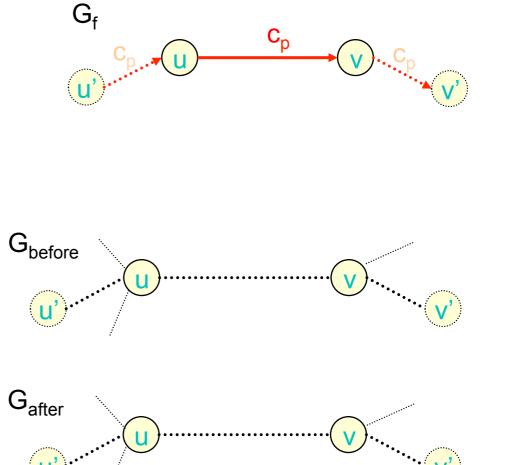
Case 2: $f(u,v) \le -c_p$: $f(v,u) = -f(u,v) \ge c_p$

Cancel/redirect reverse flow



Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$

Case 3: $-c_p < f(u,v) < 0$:



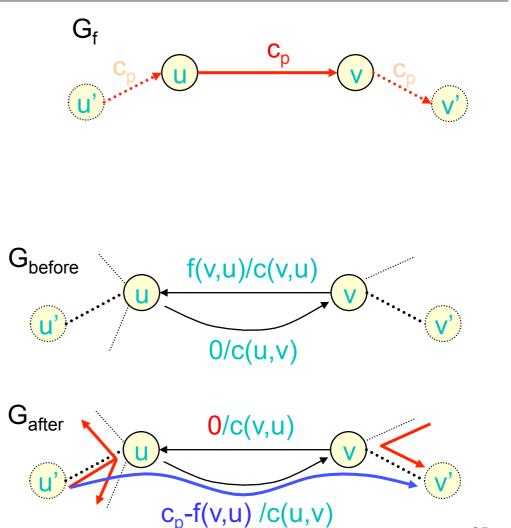
???

 $[E.g., c_p = 8, f(u,v) = -5]$

Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$

Case 3: $-c_p < f(u,v) < 0$ $c_p > f(v,u) > 0$:

Both: cancel/redirect reverse flow and add forward flow



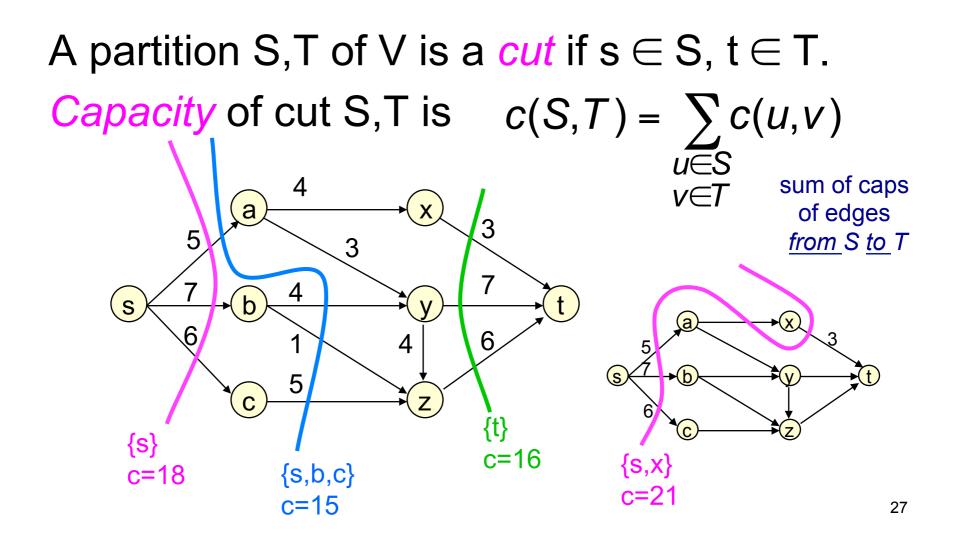
Ford-Fulkerson Method

While G_f has an augmenting path, augment

Questions:

- » Does it halt?
- » Does it find a maximum flow?
- » How fast?

Cuts



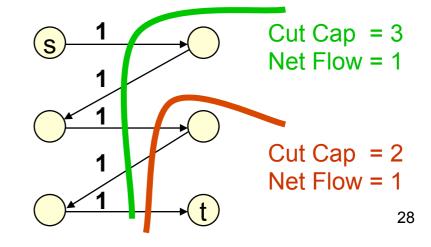
Lemma 2

For any flow f and any cut S,T,

the net flow across the cut equals the total flow, i.e., |f| = f(S,T), and

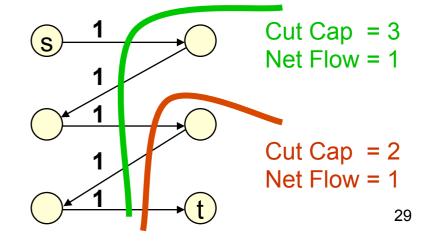
the net flow across the cut cannot exceed the capacity of the cut, i.e. $f(S,T) \le c(S,T)$

Corollary: Max flow ≤ Min cut



Lemma 2

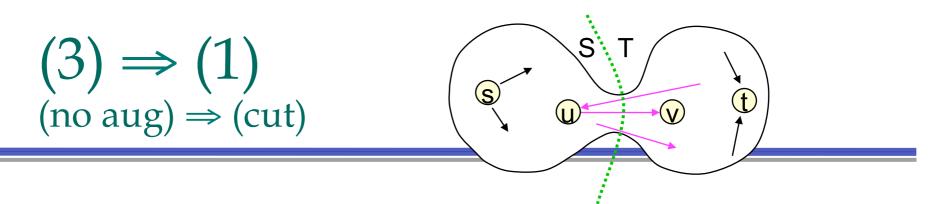
- For any flow f and any cut S,T, net flow across cut = total flow ≤ cut capacity Proof:
 - Track a flow unit. Starts at s, ends at t. crosses cut an odd # of times; net = 1.
 - Last crossing uses a forward edge totaled in C(S,T)



Max Flow / Min Cut Theorem

For any flow f, the following are equivalent
(1) |f| = c(S,T) for some cut S,T (a min cut)
(2) f is a maximum flow
(3) f admits no augmenting path
Proof:

(1)
$$\Rightarrow$$
 (2): corollary to lemma 2
(2) \Rightarrow (3): contrapositive of lemma 1



S = { u | \exists an augmenting path wrt f from s to u } T = V - S; s \in S, t \in T

For any (u,v) in S × T, ∃ an augmenting path from s to u, but not to v.

.:. (u,v) has 0 residual capacity:

 $(u,v) \in E \Rightarrow saturated \qquad f(u,v) = c(u,v)$

 $(v,u) \in E \Rightarrow no flow$ f(u,v) = 0 = -f(v,u)

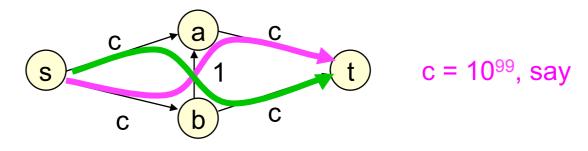
This is true for every edge crossing the cut, i.e. $|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S, v \in T, (u,v) \in E} c(u,v) = c(S,T)$

31

Corollaries & Facts

If Ford-Fulkerson terminates, then it's found a max flow.

- It will terminate if c(e) integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:



How to Make it Faster

Many ways. Three important ones:

"Scaling" – do big edges first; see text. if C = max capacity, $T = O(m^2 \log C)$

Preflow-Push – see text. $T = O(n^3)$

Edmonds-Karp; Dinitz (next) T = O(nm²)

Edmonds-Karp Algorithm

Use a shortest augmenting path (via Breadth First Search in residual graph)

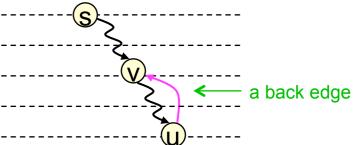
Time: O(n m²)

BFS/Shortest Path Lemmas

Distance from s is never reduced by:

- Deleting an edge proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u

proof: BFS is unchanged, since v visited before (u,v) examined

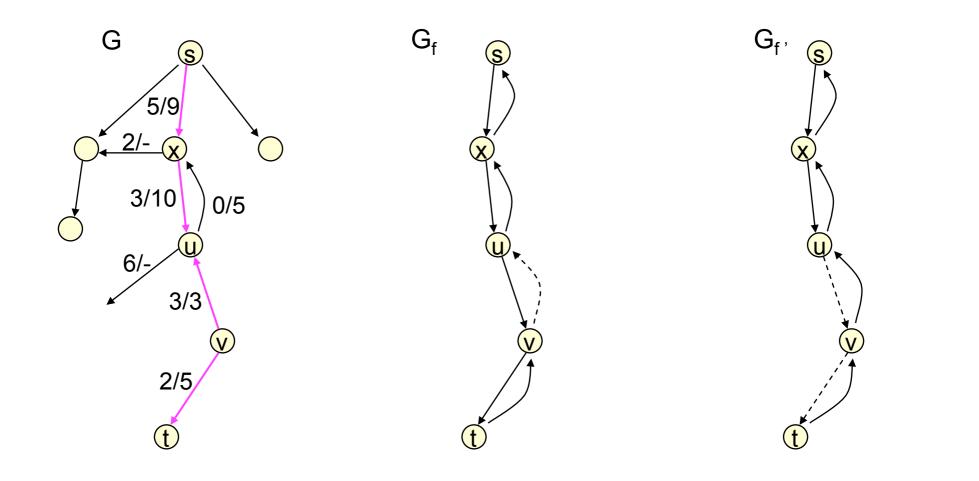


Lemma 3

Let *f* be a flow, G_f the residual graph, and *p* a shortest augmenting path. Then no vertex is closer to *s* in the new residual graph G_{f+p} after augmentation along *p*.

Proof: Augmentation only deletes edges, adds back edges

Augmentation vs BFS



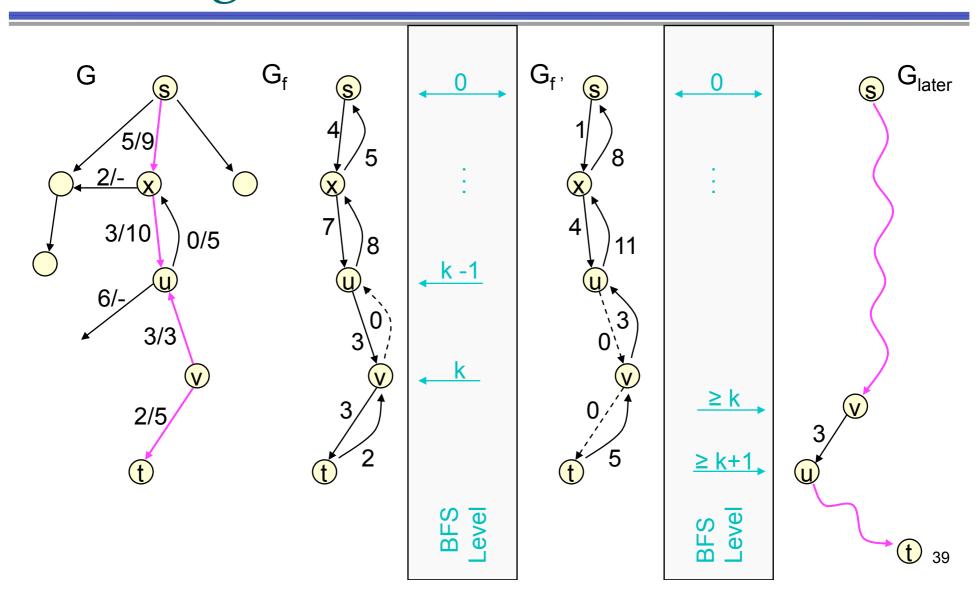
Theorem 2

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:

 $\{u,v\}$ is critical on augmenting path p if it's closest to s having min residual capacity. Won't be critical again until farther from s. So each edge critical at most n times.

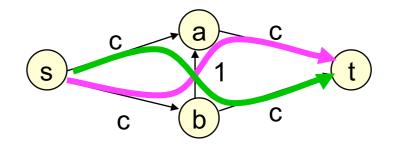
Augmentation vs BFS Level



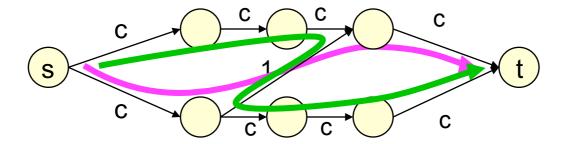
Corollary

Edmonds-Karp runs in O(nm²)

Examples



c = 10⁹⁹, say

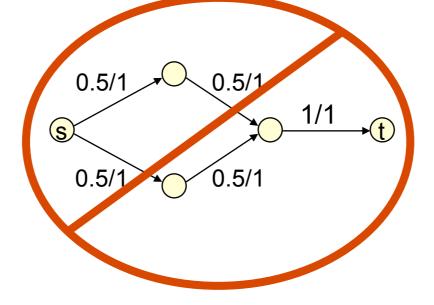


41

Flow Integrality Theorem

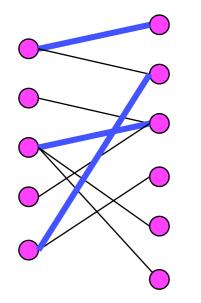
If all capacities are integers

- » Some max flow has an integer value
- » Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)



A valid flow, but unnecessary

Bipartite Maximum Matching



Bipartite Graphs:

- G = (V,E)
- $V = L \cup R (L \cap R = \emptyset)$
- $E \subseteq L \times R$

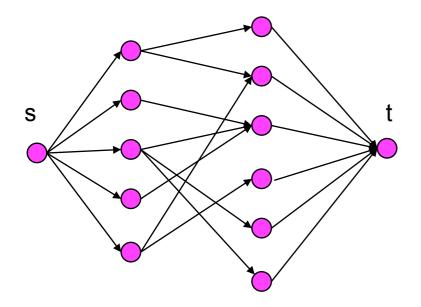
Matching:

 A set of edges M ⊆ E such that no two edges touch a common vertex

Problem:

 Find a matching M of maximum size

Reducing Matching to Flow



Given bipartite G, build flow network N as follows:

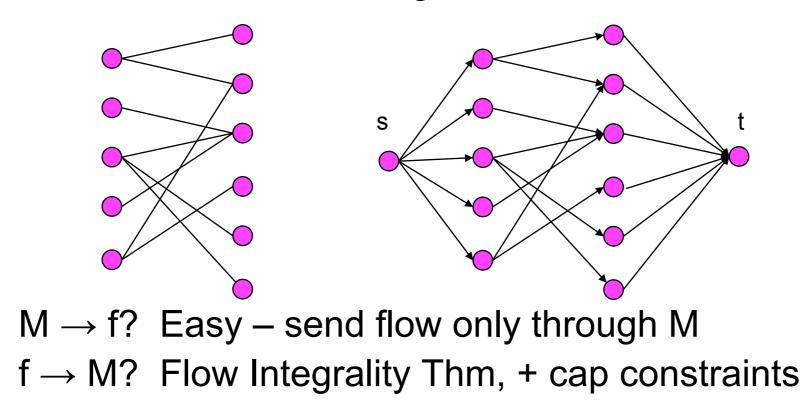
- Add source s, sink t
- Add edges s \rightarrow L
- Add edges $R \rightarrow t$
- All edge capacities 1

Theorem:

Max flow iff max matching

Reducing Matching to Flow

Theorem: Max matching size = max flow value



Notes on Matching

- Max Flow Algorithm is probably overly general here
- But most direct matching algorithms use "augmenting path" type ideas similar to that in max flow – See text & homework
- Time mn^{1/2} possible via Edmonds-Karp

7.12 Baseball Elimination

Some slides by Kevin Wayne

Baseball Elimination

Теа	im	Wins	Losses	To play	Against = g _{ij}				
i		W _i	l _i	9 _i	Atl	Phi	NY	Mon	
Atla	nta	83	71	8	-	1	6	1	
Phi	lly	80	79	3	1	-	0	2	
New	York	78	78	6	6	0	-	0	
Mont	real	77	82	3	1	2	0	-	

Which teams have a chance of finishing the season with most wins?

- » Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83.
- » $w_i + g_i < w_j \implies$ team i eliminated.
- » Only reason sports writers appear to be aware of.
- » Sufficient, but not necessary!

Baseball Elimination

Team	Wins	Losses	To play	Against = g _{ij}				
i	W _i	l l _i	9 _i	Atl	Phi	NY	Mon	
Atlanta	83	71	8	-	1	6	1	
Philly	80	79	3	1	-	0	2	
New York	78	78	6	6	0	-	0	
Montreal	77	82	3	1	2	0	-	

Which teams have a chance of finishing the season with most wins?

- » Philly can win 83, but still eliminated . . .
- » If Atlanta loses a game, then some other team wins one.

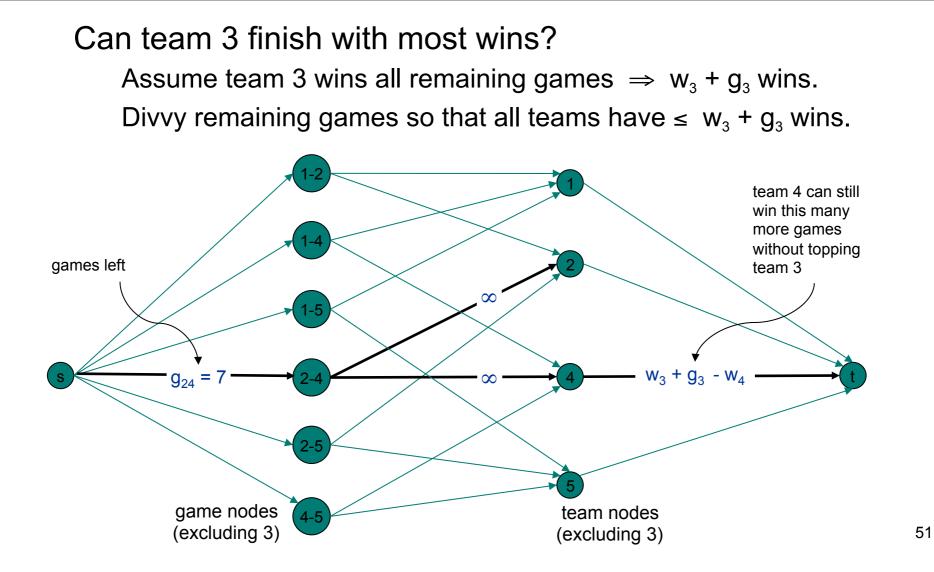
Remark. Depends on *both* how many games already won and left to play, *and* on whom they're against.

Baseball Elimination

Baseball elimination problem.

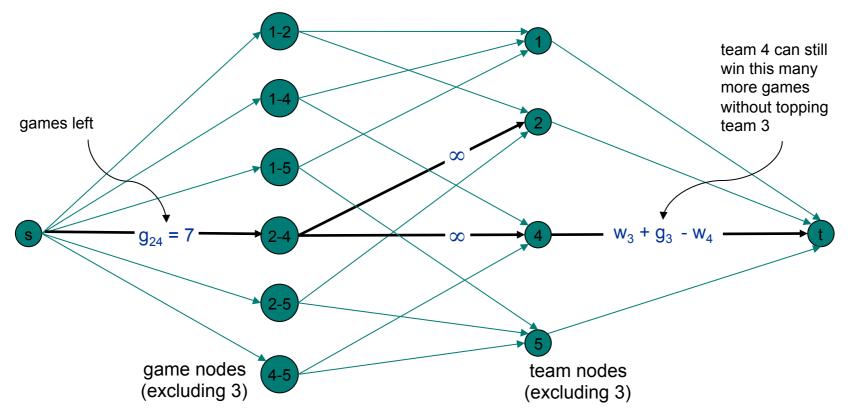
- » Set of teams S.
- » Distinguished team $s \in S$.
- » Team x has won w_x games already.
- » Teams x and y play each other g_{xy} additional times.
- » Is there any outcome of the remaining games in which team s finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation



Baseball Elimination: As Max Flow

Theorem. Team 3 is eliminated iff max flow \neq games left. Integrality \Rightarrow each remaining x-y game added to # wins for x or y. Capacity on (x, t) edges ensure no team wins too many games. In max flow, unsaturated source edge = unplayed game; if played, (either) winner would push ahead of team 3



Team	Wins	Losses	To play	Against =g _{ii}					
i	W _i	l l _i	g i	NY	Bal	Bos	Tor	Det	
NY	75	59	28	-	3	8	7	3	
Baltimore	71	63	28	3	-	2	7	4	
Boston	69	66	27	8	2	-	0	0	
Toronto	63	72	27	7	7	0	-	-	
Detroit	49	86	27	3	4	0	0	-	

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Team	Wins	Losses	To play	Against =g _{ij}				
i	W _i	l l _i	9 _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams could finish the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}

Have already won w(R) = 278 games.

Must win at least r(R) = 27 more.

Average team in R wins at least 305/4 > 76 games.

$$\overbrace{\begin{array}{c} \text{Certificate of} \\ \text{elimination} \end{array}}^{\# \text{ vins}} T \subseteq S, \ w(T) \coloneqq \overbrace{\sum_{i \in T} w_i}^{\# \text{ wins}}, \ g(T) \coloneqq \overbrace{\begin{array}{c} \sum_{\{x,y\} \subseteq T} g_{xy} \\ \{x,y\} \subseteq T \end{array}}^{\# \text{ remaining games}},$$

If
$$\frac{w(T) + g(T)}{|T|} > w_z + g_z$$
 then z eliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T* that eliminates z.

Proof idea. Let T^* = teams on source side of min cut.

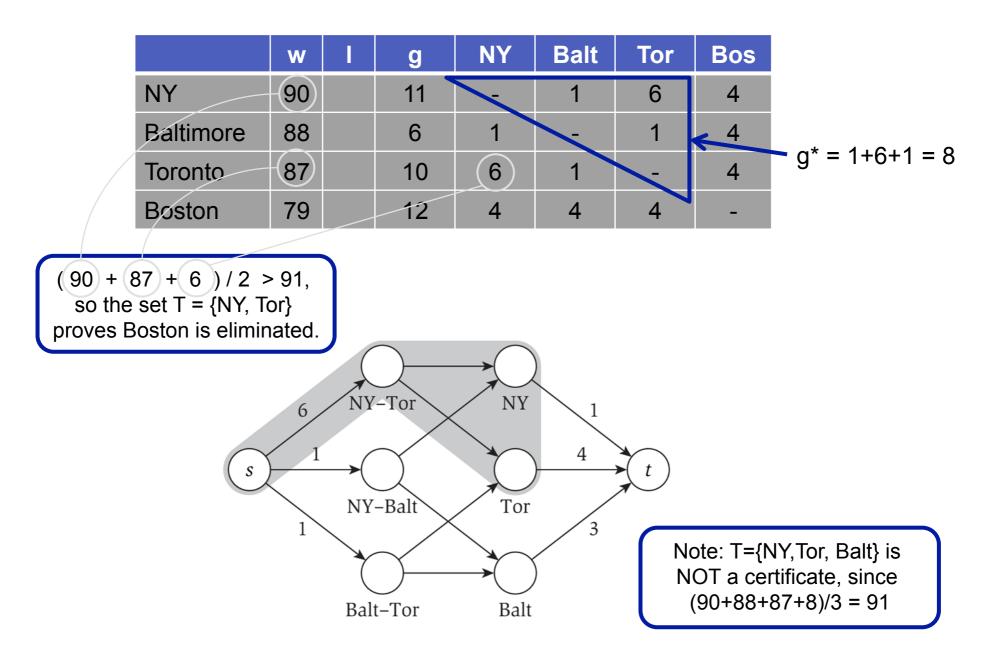
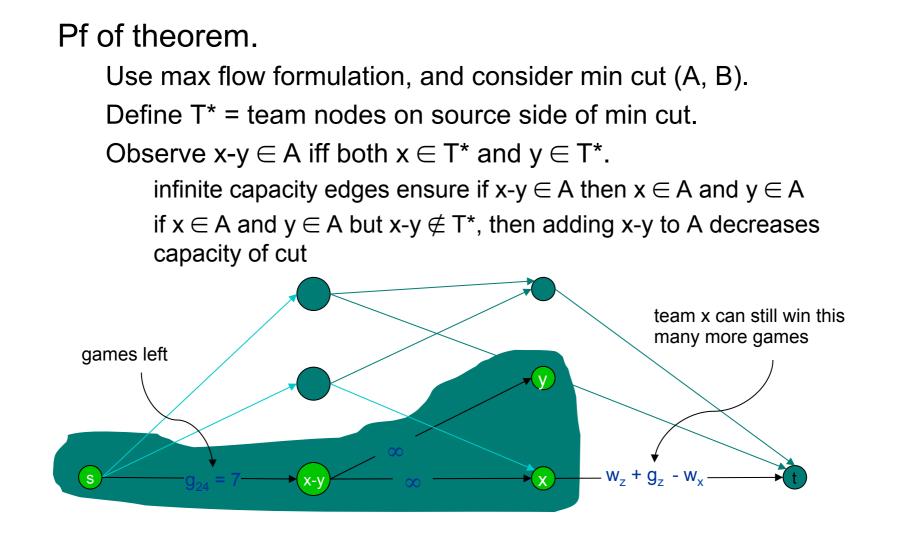


Fig 7.21 Min cut \Rightarrow no flow of value g^{*}, so Boston eliminated.



Pf of theorem.

Use max flow formulation, and consider min cut (A, B).

Define T^* = team nodes on source side of min cut.

Observe $x-y \in A$ iff both $x \in T^*$ and $y \in T^*$. $g(S - \{z\}) > cap(A, B)$

$$= \underbrace{g(S - \{z\}) - g(T^*)}_{g(S - \{z\}) - g(T^*)} + \underbrace{\sum_{x \in T^*}}_{x \in T^*} (w_z + g_z - w_x)$$

$$= g(S - \{z\}) - g(T^*) - w(T^*) + |T^*| (w_z + g_z)$$

Rearranging: $w_z + g_z < \frac{w(T^*) + g(T^*)}{|T^*|}$

Matching & Baseball: Key Points

Can (sometimes) take problems that seemingly have *nothing* to do with flow & reduce them to a flow problem

How? Build a clever network; map allocation of stuff in original problem (match edges; wins) to allocation of flow in network. Clever edge capacities constrain solution to mimic original problem in some way. Integrality useful.

Matching & Baseball: Key Points

Furthermore, in the baseball example, min cut can be translated into a succinct *certificate* or *proof* of some property that is much more transparent than "see, I ran max-flow and it says flow must be less than g*".

These examples suggest why max flow is so important – *it's a very general tool used in many other algorithms*.