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6.1  Weighted Interval Scheduling 



Weighted Interval Scheduling 

Weighted interval scheduling problem. 
  Job j starts at sj, finishes at fj, and has weight or value vj .  
  Two jobs compatible if they don't overlap. 
  Goal:  find maximum weight subset of mutually compatible jobs. 
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Unweighted Interval Scheduling Review 

Recall.  Greedy algorithm works if all weights are 1. 
  Consider jobs in ascending order of finish time. 
  Add job to subset if it is compatible with previously chosen jobs. 

Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed. 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value of optimal solution to the problem consisting 
of job requests 1, 2, ..., j. 
 
  Case 1:  Optimum selects job j. 

–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

  Case 2:  Optimum does not select job j. 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Compute-Opt(j) { 
   if (j = 0) 
      return 0 
   else 
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 
} 

Weighted Interval Scheduling:  Brute Force 

Brute force recursive algorithm. 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  ⇒  exponential algorithms.  
 
Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence. 
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Memoization.  Store sub-problem results in a cache; lookup as needed. 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
Compute p(1), p(2), …, p(n) 
 
for j = 1 to n 
   M[j] = empty 
M[0] = 0 
 
M-Compute-Opt(j) { 
   if (M[j] is empty) 
      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) 
   return M[j] 
} 
 
Main() { 
  ??? 
} 

global array 

Weighted Interval Scheduling:  Memoization 
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Weighted Interval Scheduling:  Running Time 

Claim.  Memoized version of algorithm takes O(n log n) time. 
  Sort by finish time:  O(n log n). 
  Computing p(⋅) :  O(n) after sorting by start time. 

  M-Compute-Opt(j):  each invocation takes O(1) time and either 
–  (i)  returns an existing value M[j] 
–  (ii) fills in one new entry M[j] and makes two recursive calls 

  Progress measure Φ = # nonempty entries of M[]. 
–  initially Φ = 0,  throughout Φ ≤ n.  
–  (ii) increases Φ by 1  ⇒  at most 2n recursive calls. 

  Overall running time of M-Compute-Opt(n) is O(n).   ▪ 

Remark.  O(n) if jobs are pre-sorted by start and finish times. 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming.  Unwind recursion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Claim: M[j] is value of optimal solution for jobs 1..j 
Timing: Easy.  Main loop is O(n); sorting is O(n log n) 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Iterative-Compute-Opt { 
   M[0] = 0 
   for j = 1 to n 
      M[j] = max(vj + M[p(j)], M[j-1]) 
} 
 
Output M[n] 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Weighted Interval Scheduling:  Finding a Solution 

Q.  Dynamic programming algorithms computes optimal value.  What if 
we want the solution itself? 
A.  Do some post-processing – “traceback” 

  # of recursive calls ≤ n  ⇒  O(n). 

 
Run M-Compute-Opt(n) 
Run Find-Solution(n) 
 
Find-Solution(j) { 
   if (j = 0) 
      output nothing 
   else if (vj + M[p(j)] > M[j-1]) 
      print j 
      Find-Solution(p(j)) 
   else 
      Find-Solution(j-1) 
} 

the condition 
determining the 
max when 
computing M[ ] 

the relevant 
sub-problem 
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Sidebar: why does job ordering matter?	


It’s Not for the same reason as in the greedy algorithm for unweighted  
interval scheduling. 
 
Instead, it’s because it allows us to consider only a small number of 
subproblems (O(n)), vs the exponential number that seem to be needed if 
the jobs aren’t ordered (seemingly, any of the 2n possible  
subsets might be relevant) 
 
Don’t believe me?  Think about the analogous problem for weighted 
rectangles instead of intervals… (I.e., pick max weight non-overlapping 
subset of a set of axis-parallel rectangles.)  Same problem for circles also 
appears difficult. 
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6.4  Knapsack Problem 



Knapsack Problem 

Knapsack problem. 
  Given n objects and a "knapsack." 
  Item i weighs wi  > 0 kilograms and has value vi > 0. 
  Knapsack has capacity of W kilograms. 
  Goal:  fill knapsack so as to maximize total value. 

Ex:  { 3, 4 } has value 40. 
 
 
 
 
 
 
Greedy:  repeatedly add item with maximum ratio vi / wi. 
Ex:  { 5, 2, 1 } achieves only value = 35  ⇒  greedy not optimal. 
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Dynamic Programming:  False Start 

Def.  OPT(i) = max profit subset of items 1, …, i. 

  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 }  

  Case 2:  OPT selects item i. 
–  accepting item i does not immediately imply that we will have to 

reject other items 
–  without knowing what other items were selected before i, we don't 

even know if we have enough room for i 

 
Conclusion.  Need more sub-problems! 
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Dynamic Programming:  Adding a New Variable 

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w. 

  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w  

  Case 2:  OPT selects item i. 
–  new weight limit = w – wi 
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit 
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OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise
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Input: n, w1,…,wN, v1,…,vN 
 
for w = 0 to W 
   M[0, w] = 0 
 
for i = 1 to n 
   for w = 1 to W 
      if (wi > w) 
         M[i, w] = M[i-1, w] 
      else 
         M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]} 
 
return M[n, W] 

Knapsack Problem:  Bottom-Up 

Knapsack.  Fill up an n-by-W array. 
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Knapsack Algorithm 
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W = 11 OPT:  { 4, 3 } 
value = 22 + 18 = 40 

if (wi > w) 
  M[i, w] = M[i-1, w] 
else 
  M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]} 
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Knapsack Problem:  Running Time 

Running time.  Θ(n W). 
  Not polynomial in input size! 
  "Pseudo-polynomial." 
  Decision version of Knapsack is NP-complete.  [Chapter 8] 

Knapsack approximation algorithm.  There exists a polynomial algorithm 
that produces a feasible solution that has value within 0.01% (or any 
other desired factor) of optimum.  [Section 11.8] 
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