
Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

1

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
  Job j starts at sj, finishes at fj, and has weight or value vj .
  Two jobs compatible if they don't overlap.
  Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

6

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time.
  Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by
finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a2 a3 a4 a5 a6 a7 a8 a9 a10

by
weight

7

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

5	
8	

3	
7	

2	
6	

0	
5	

1	
4	

0	
3	

0	
2	

0	
1	

-	
0	

p(j)	
j	

8

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1, 2, ..., j.

  Case 1: Optimum selects job j.

–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

  Case 2: Optimum does not select job j.
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

optimal substructure

9

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force recursive algorithm.

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

11

Memoization. Store sub-problem results in a cache; lookup as needed.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

Main() {
 ???
}

global array

Weighted Interval Scheduling: Memoization

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
  Sort by finish time: O(n log n).
  Computing p(⋅) : O(n) after sorting by start time.

  M-Compute-Opt(j): each invocation takes O(1) time and either
–  (i) returns an existing value M[j]
–  (ii) fills in one new entry M[j] and makes two recursive calls

  Progress measure Φ = # nonempty entries of M[].
–  initially Φ = 0, throughout Φ ≤ n.
–  (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

  Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

13

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Claim: M[j] is value of optimal solution for jobs 1..j
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

Output M[n]

15

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

5	
8	

3	
7	

2	
6	

0	
5	

1	
4	

0	
3	

0	
2	

0	
1	

0

	

-	
-

	

0	

optj	
pj	
vj	
j	

16

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing – “traceback”

  # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

the condition
determining the
max when
computing M[]

the relevant
sub-problem

17

Sidebar: why does job ordering matter?	

It’s Not for the same reason as in the greedy algorithm for unweighted
interval scheduling.

Instead, it’s because it allows us to consider only a small number of
subproblems (O(n)), vs the exponential number that seem to be needed if
the jobs aren’t ordered (seemingly, any of the 2n possible
subsets might be relevant)

Don’t believe me? Think about the analogous problem for weighted
rectangles instead of intervals… (I.e., pick max weight non-overlapping
subset of a set of axis-parallel rectangles.) Same problem for circles also
appears difficult.

18

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
  Given n objects and a "knapsack."
  Item i weighs wi > 0 kilograms and has value vi > 0.
  Knapsack has capacity of W kilograms.
  Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not optimal.

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

26

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 }

  Case 2: OPT selects item i.
–  accepting item i does not immediately imply that we will have to

reject other items
–  without knowing what other items were selected before i, we don't

even know if we have enough room for i

Conclusion. Need more sub-problems!

27

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w

  Case 2: OPT selects item i.
–  new weight limit = w – wi
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

28

Input: n, w1,…,wN, v1,…,vN

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

29

Knapsack Algorithm

n + 1

1

Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11 OPT: { 4, 3 }
value = 22 + 18 = 40

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

30

Knapsack Problem: Running Time

Running time. Θ(n W).
  Not polynomial in input size!
  "Pseudo-polynomial."
  Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% (or any
other desired factor) of optimum. [Section 11.8]

31

