
1

CSE421 Algorithms

Sequence Alignment

8

Sequence Alignment

What
Why
A Dynamic Programming Algorithm

9

 Sequence Similarity: What

G G A C C A

T A C T A A G

T C C A A T

10

 Sequence Similarity: What

G G A C C A

T A C T A A G
 | : | : | | :
T C C – A A T

12

Sequence Similarity: Why

Bio
Most widely used comp. tools in biology
New sequence always compared to data bases
Similar sequences often have similar
origin or function
Recognizable similarity after 108 –109 yr
DNA sequencing & assembly

Other
spell check/correct, diff, svn/git/…, plagiarism, …

15

Terminology

String: ordered list of letters TATAAG

Prefix: consecutive letters from front
empty, T, TA, TAT, ...

Suffix: … from end
empty, G, AG, AAG, ...

Substring: … from ends or middle
empty, TAT, AA, ...

Subsequence: ordered, nonconsecutive
TT, AAA, TAG, ...

16

Sequence Alignment

 a c b c d b a c – – b c d b
 c a d b d – c a d b – d –

Defn: An alignment of strings S, T is a

pair of strings S’, T’ (with dashes) s.t.
(1) |S’| = |T’|, and (|S| = “length of S”)
(2) removing all dashes leaves S, T

17

 Alignment Scoring

a c b c d b a c - - b c d b
c a d b d - c a d b - d -

 -1 2 -1 -1 2 -1 2 -1

 Value = 3*2 + 5*(-1) = +1

The score of aligning (characters or
dashes) x & y is σ(x,y).

Value of an alignment
An optimal alignment: one of max value
(Assume σ(-,-) < 0)

Mismatch = -1
Match = 2

€

σ(S'[i],T '[i])
i=1

|S'|
∑

26

Alignment by
Dynamic Programming?

Common Subproblems?
Plausible: probably re-considering alignments of
various small substrings unless we're careful.

Optimal Substructure?
Plausible: left and right "halves" of an optimal
alignment probably should be optimally aligned
(though they obviously interact a bit at the interface).

(Both made rigorous below.)

27

Optimal Substructure
(In More Detail)

Optimal alignment ends in 1 of 3 ways:
last chars of S & T aligned with each other
last char of S aligned with dash in T

last char of T aligned with dash in S
(never align dash with dash; σ(–, –) < 0)

In each case, the rest of S & T should be
optimally aligned to each other

28

Optimal Alignment in O(n2)
via “Dynamic Programming”

Input: S, T, |S| = n, |T| = m
Output: value of optimal alignment

Easier to solve a “harder” problem:

 V(i,j) = value of optimal alignment of
 S[1], …, S[i] with T[1], …, T[j]
 for all 0 ≤ i ≤ n, 0 ≤ j ≤ m.

29

Base Cases

V(i,0): first i chars of S all match dashes

V(0,j): first j chars of T all match dashes

 €

V (i,0) = σ (S[k],−)
k=1

i
∑

€

V (0, j) = σ (−,T [k])
k=1

j
∑

30

General Case

Opt align of S[1], …, S[i] vs T[1], …, T[j]:

Opt align of
S1…Si-1 &
T1…Tj-1

€

V(i,j) = max
V(i-1,j-1) +σ (S[i],T[j])
V(i-1,j) +σ (S[i], -)
V(i,j-1) +σ (- , T[j])

$
%

&
%

'

(
%

)
%
,

~~~~ S[i]
~~~~ T[ j]
!

" #
$

% &
,

~~~~    S[i]
~~~~    −   
!

" #
$

% &
, or

~~~~     −   
~~~~   T [ j]
!

" #
$

% &

.1,1 mjni ≤≤≤≤ all for

31

Calculating One Entry

€

V(i,j) = max
V(i-1,j-1) +σ (S[i],T[j])
V(i-1,j) +σ (S[i], -)
V(i,j-1) +σ (- , T[j])

$
%

&
%

'

(
%

)
%

V(i-1,j-1)

V(i,j)

V(i-1,j)

V(i,j-1) S[i] . .

T[j]
 :

32

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

Score(c,-) = -1
c
-

33

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

Score(-,a) = -1
-
a

34

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

Score(-,c) = -1
-  -
a c
-1

35

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

1

-1 -2

-1 1

-3 1

-2

σ(a,a)=+2 σ(-,a)=-1

σ(a,-)=-1
ca-
--a

ca
a-

ca
-a

36

Example

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1

2 c -2 1

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Time =
 O(mn)

Mismatch = -1
Match = 2

37

Example

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 b -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 d -5 -2 -2 1 0 3

6 b -6 -3 -3 0 3 2

 ↑
 S

Mismatch = -1
Match = 2

38

Finding Alignments: Trace Back

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 b -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 d -5 -2 -2 1 0 3

6 b -6 -3 -3 0 3 2

 ↑
 S

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

39

Complexity Notes

Time = O(mn), (value and alignment)

Space = O(mn)

Easy to get value in Time = O(mn) and
Space = O(min(m,n))

Possible to get value and alignment in
Time = O(mn) and Space =O(min(m,n))
but tricky.

41

Significance of Alignments

Is “42” a good score?
Compared to what?

Usual approach: compared to a specific
“null model”, such as “random sequences”

Interesting stats problem; much is known

55

Variations

Local Alignment
Preceding gives global alignment, i.e. full
length of both strings;
Might well miss strong similarity of part of
strings amidst dissimilar flanks

Gap Penalties
10 adjacent spaces cost 10 x one space?

Many others
Similarly fast DP algs often possible

72

Summary: Alignment
Functionally similar proteins/DNA often have recognizably

similar sequences even after eons of divergent evolution
Ability to find/compare/experiment with “same” sequence

in other organisms is a huge win
Surprisingly simple scoring works well in practice: score

positions separately & add, usually w/ fancier gap model
like affine

Simple dynamic programming algorithms can find optimal
alignments under these assumptions in poly time
(product of sequence lengths)

This, and heuristic approximations to it like BLAST, are
workhorse tools in molecular biology

73

Summary: Dynamic Programming

Keys to D.P. are to
a)  identify the subproblems (usually repeated/overlapping)
b)  solve them in a careful order so all small ones solved before they

are needed by the bigger ones, and
c)  build table with solutions to the smaller ones so bigger ones just

need to do table lookups (no recursion, despite recursive
formulation implicit in (a))

d)  Implicitly, optimal solution to whole problem devolves to optimal
solutions to subproblems

