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Efficiency 

Our correct TSP algorithm was incredibly slow	

Basically slow no matter what computer you have	

We want a general theory of “efficiency” that is	


Simple	

Objective	


Relatively independent of changing technology	

But still predictive – “theoretically bad” algorithms should 
be bad in practice and vice versa (usually)	
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Defining Efficiency 

“Runs fast on typical real problem instances”	

	

Pro: 	


sensible, bottom-line-oriented	


	


Con:	

moving target (diff computers, compilers, Moore’s law) 	


highly subjective (how fast is “fast”?  What’s “typical”?)	
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computational complexity 

The time complexity of an algorithm associates 
a number T(n), the worst-case time the 
algorithm takes, with each problem size n.	


	

Mathematically,	


T: N+ → R+	

i.e.,T is a function mapping positive integers 
(problem sizes) to positive real numbers (number 
of steps).	

“Reals” so we can say, e.g., sqrt(n) instead of ⎡sqrt(n)⎤	
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computational complexity: general goals 

Asymptotic growth rate, i.e., characterize growth 
rate of worst-case run time as a function of problem 
size, up to a constant factor, e.g. T(n) = O(n2)	

	

Why not try to be more precise?	

	
Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …) 
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford this today, how 
much longer will it take when my business is 2x larger?  
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)  ���
Big-O analysis is adequate to address this.	
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computational complexity 
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Problem size !

Ti
m

e!

T(n)!

2n log2n!

n log2n!



O-notation, etc. 

Given two functions f and g:N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≤ c g(n)	


	


f(n) is Ω (g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≥ c g(n) 	


	


f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that ���
	
 	
 	
eventually always c1g(n) ≤ f(n) ≤ c2g(n)	
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Examples 

10n2-16n+100 is O(n2)  	
also O(n3)	

10n2-16n+100 ≤ 11n2 for all n ≥ 10	


10n2-16n+100 is Ω (n2)  	
also Ω (n)	

10n2-16n+100 ≥ 9n2 for all n ≥16	


Therefore also 10n2-16n+100 is Θ (n2)	

	


10n2-16n+100 is not O(n) also not Ω (n3)	
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Properties 

Transitivity.	

If f = O(g) and g = O(h) then f = O(h).	

If f = Ω(g) and g = Ω(h) then f = Ω(h). 	

If f = Θ(g) and g = Θ(h) then f = Θ(h).	


	

Additivity.	


If f = O(h) and g = O(h) then f + g = O(h). 	

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	

If f = Θ(h) and g = O(h) then f + g = Θ(h).	
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Working with O-Ω-Θ notation 

Claim:  For any a, and any b>0,  (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b  	
for n ≥ |a|���
	
= 2bnb ���
	
= cnb 	
 	
for c = 2b ���

so (n+a)b is O(nb) ���
	


(n+a)b ≥ (n/2)b 	
for n ≥ 2|a| (even if a < 0)                              
	
= 2-bnb ���
	
= c’n 	
 	
for c’ = 2-b ���

so (n+a)b is Ω (nb)	
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Working with O-Ω-Θ notation 

Claim:  For any a, b>1   logan is Θ (logbn)	
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! 

loga b = x means ax = b

aloga b = b

(aloga b )logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n ="(loga n) ="(logn)



Asymptotic Bounds for Some Common Functions 

Polynomials:  ���
	
a0 + a1n + … + adnd  is Θ(nd) if ad > 0���

	

Logarithms:  ���
	
O(loga n) = O(logb n) for any constants a,b > 0���
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polynomial vs exponential 

  ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	
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n100	

1.01n	


In short, every exponential 
grows faster than every 
polynomial!	
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polynomial vs logarithm 

Logarithms:  ���
	
For all x > 0,  (no matter how small)  log n = O(nx)	
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log grows slower than every polynomial	




Domination 

f(n) is o(g(n)) iff  limn→∞ f(n)/g(n)=0	

that is g(n) dominates f(n) ���
	


If a ≤ b then na is O(nb) ���
	

If a < b then na is o(nb)	

	

Note: ���
if f(n) is Θ (g(n)) then it cannot be o(g(n))	
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Working with little-o 

n2 = o(n3) [Use algebra]:	

	

	

n3 = o(en)  [Use L’Hospital’s rule 3 times]: 	
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polynomial vs exponential 

  ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

nd = o(rn), even	
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n100	

1.01n	


In short, every exponential 
grows faster than every 
polynomial!	




Big-Theta, etc. not always “nice” 
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! 

f (n) =
n2, n even
n, n odd

" 
# 
$ 

% 
& 
' 

f(n) ≠ Θ(na) for any a.!
Fortunately, such 
nasty cases are rare!

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.!



the complexity class P: polynomial time 

P: Running time O(nd) for some constant d ���
	
(d is independent of the input size n)	


Nice scaling property: there is a constant c s.t. ���
doubling n, time increases only by a factor of c. ���
	
(E.g., c ~ 2d)	


Contrast with exponential: For any constant c, 
there is a d such that n → n+d increases time 
by a factor of more than c. 	


	
(E.g., c = 100 and d = 7 for 2n vs 2n+7)	
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polynomial vs exponential growth 
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why it matters 
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not only get very big, but do 
so abruptly, which likely yields 
erratic performance on small  
instances	




another view of poly vs exp 

Next year's computer will be 2x faster.  If I can solve 
problem of size n0 today, how large a problem can I 
solve in the same time next year? 	
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Complexity Increase E.g. T=1012 

O(n) n0 → 2n0 1012 → 2  x 1012 

O(n2) n0 → √2 n0 106             → 1.4  x 106 

O(n3) n0 → 3√2 n0 104 → 1.25  x 104 

2n /10 n0 → n0+10 400 → 410 
2n n0 → n0 +1 40 → 41 



why “polynomial”? 

Point is not that n2000 is a nice time bound, or that 
the differences among n and 2n and n2 are negligible.	


	

Rather, simple theoretical tools may not easily 
capture such differences, whereas exponentials are 
qualitatively different from polynomials, so more 
amenable to theoretical analysis.	


“My problem is in P” is a starting point for a more detailed 
analysis	


“My problem is not in P” may suggest that you need to 
shift to a more tractable variant, or otherwise readjust 
expectations	
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complexity summary 

Typical initial goal for algorithm analysis is to 
find an 	


asymptotic 	
 	
 	
	


upper bound on 	
 	
 	
 	
	

worst case running time 	

as a function of problem size	


This is rarely the last word, but often helps 
separate good algorithms from blatantly 
poor ones - concentrate on the good ones!	
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