
CSE 421: Intro Algorithms

2: Analysis

Larry Ruzzo	

1	

Efficiency

Our correct TSP algorithm was incredibly slow	

Basically slow no matter what computer you have	

We want a general theory of “efficiency” that is	

Simple	

Objective	

Relatively independent of changing technology	

But still predictive – “theoretically bad” algorithms should
be bad in practice and vice versa (usually)	

3	

Defining Efficiency

“Runs fast on typical real problem instances”	

	

Pro: 	

sensible, bottom-line-oriented	

	

Con:	

moving target (diff computers, compilers, Moore’s law) 	

highly subjective (how fast is “fast”? What’s “typical”?)	

4	

computational complexity

The time complexity of an algorithm associates
a number T(n), the worst-case time the
algorithm takes, with each problem size n.	

	

Mathematically,	

T: N+ → R+	

i.e.,T is a function mapping positive integers
(problem sizes) to positive real numbers (number
of steps).	

“Reals” so we can say, e.g., sqrt(n) instead of ⎡sqrt(n)⎤	

10	

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth
rate of worst-case run time as a function of problem
size, up to a constant factor, e.g. T(n) = O(n2)	

	

Why not try to be more precise?	

	
Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …)
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford this today, how
much longer will it take when my business is 2x larger?
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.) ���
Big-O analysis is adequate to address this.	

12	

computational complexity

13	

Problem size !

Ti
m

e!

T(n)!

2n log2n!

n log2n!

O-notation, etc.

Given two functions f and g:N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	
 f(n) is eventually always ≤ c g(n)	

	

f(n) is Ω (g(n)) iff there is a constant c>0 so that 	

	
 f(n) is eventually always ≥ c g(n) 	

	

f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that ���
	
 	
 	
eventually always c1g(n) ≤ f(n) ≤ c2g(n)	

15	

Examples

10n2-16n+100 is O(n2) 	
also O(n3)	

10n2-16n+100 ≤ 11n2 for all n ≥ 10	

10n2-16n+100 is Ω (n2) 	
also Ω (n)	

10n2-16n+100 ≥ 9n2 for all n ≥16	

Therefore also 10n2-16n+100 is Θ (n2)	

	

10n2-16n+100 is not O(n) also not Ω (n3)	

16	

Properties

Transitivity.	

If f = O(g) and g = O(h) then f = O(h).	

If f = Ω(g) and g = Ω(h) then f = Ω(h). 	

If f = Θ(g) and g = Θ(h) then f = Θ(h).	

	

Additivity.	

If f = O(h) and g = O(h) then f + g = O(h). 	

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	

If f = Θ(h) and g = O(h) then f + g = Θ(h).	

17	

Working with O-Ω-Θ notation

Claim: For any a, and any b>0, (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b 	
for n ≥ |a|���
	
= 2bnb ���
	
= cnb 	
 	
for c = 2b ���

so (n+a)b is O(nb) ���
	

(n+a)b ≥ (n/2)b 	
for n ≥ 2|a| (even if a < 0)
	
= 2-bnb ���
	
= c’n 	
 	
for c’ = 2-b ���

so (n+a)b is Ω (nb)	

18	

Working with O-Ω-Θ notation

Claim: For any a, b>1 logan is Θ (logbn)	

19	

!

loga b = x means ax = b

aloga b = b

(aloga b)logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n ="(loga n) ="(logn)

Asymptotic Bounds for Some Common Functions

Polynomials: ���
	
a0 + a1n + … + adnd is Θ(nd) if ad > 0���

	

Logarithms: ���
	
O(loga n) = O(logb n) for any constants a,b > 0���

	

20	

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

	

	

21	

n100	

1.01n	

In short, every exponential
grows faster than every
polynomial!	

0 200 400 600 800 1000

0
5

10
15

20
25

30

n

n^.50

n^.33

log(n)

1 10 100 1000

0
5

10
15

20
25

30

n (log scale)

n^.50 n^.33

log(n)

polynomial vs logarithm

Logarithms: ���
	
For all x > 0, (no matter how small) log n = O(nx)	

22	

log grows slower than every polynomial	

Domination

f(n) is o(g(n)) iff limn→∞ f(n)/g(n)=0	

that is g(n) dominates f(n) ���
	

If a ≤ b then na is O(nb) ���
	

If a < b then na is o(nb)	

	

Note: ���
if f(n) is Θ (g(n)) then it cannot be o(g(n))	

23	

Working with little-o

n2 = o(n3) [Use algebra]:	

	

	

n3 = o(en) [Use L’Hospital’s rule 3 times]: 	

	

24	

!

limn"#

n2

n3
= limn"#

1
n

= 0

!

limn"#

n3

en
= limn"#

3n2

en
= limn"#

6n
en

= limn"#

6
en

= 0

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

nd = o(rn), even	

	

25	

n100	

1.01n	

In short, every exponential
grows faster than every
polynomial!	

Big-Theta, etc. not always “nice”

26	

!

f (n) =
n2, n even
n, n odd

"

$

%
&
'

f(n) ≠ Θ(na) for any a.!
Fortunately, such
nasty cases are rare!

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.!

the complexity class P: polynomial time

P: Running time O(nd) for some constant d ���
	
(d is independent of the input size n)	

Nice scaling property: there is a constant c s.t. ���
doubling n, time increases only by a factor of c. ���
	
(E.g., c ~ 2d)	

Contrast with exponential: For any constant c,
there is a d such that n → n+d increases time
by a factor of more than c. 	

	
(E.g., c = 100 and d = 7 for 2n vs 2n+7)	

27	

polynomial vs exponential growth

 	

28	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

why it matters

29	

not only get very big, but do
so abruptly, which likely yields
erratic performance on small
instances	

another view of poly vs exp

Next year's computer will be 2x faster. If I can solve
problem of size n0 today, how large a problem can I
solve in the same time next year? 	

	

30	

Complexity Increase E.g. T=1012

O(n) n0 → 2n0 1012 → 2 x 1012

O(n2) n0 → √2 n0 106 → 1.4 x 106

O(n3) n0 → 3√2 n0 104 → 1.25 x 104

2n /10 n0 → n0+10 400 → 410
2n n0 → n0 +1 40 → 41

why “polynomial”?

Point is not that n2000 is a nice time bound, or that
the differences among n and 2n and n2 are negligible.	

	

Rather, simple theoretical tools may not easily
capture such differences, whereas exponentials are
qualitatively different from polynomials, so more
amenable to theoretical analysis.	

“My problem is in P” is a starting point for a more detailed
analysis	

“My problem is not in P” may suggest that you need to
shift to a more tractable variant, or otherwise readjust
expectations	

31	

complexity summary

Typical initial goal for algorithm analysis is to
find an 	

asymptotic 	
 	
 	
	

upper bound on 	
 	
 	
 	
	

worst case running time 	

as a function of problem size	

This is rarely the last word, but often helps
separate good algorithms from blatantly
poor ones - concentrate on the good ones!	

34	

