

Stable Matching

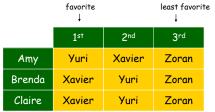
Paul Beame

Matching Residents to Hospitals

- Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process.
- Unstable pair: applicant x and hospital y are unstable if:
 - x prefers y to their assigned hospital.
 - v prefers x to one of its admitted residents.
- Stable assignment. Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital side deal from being made.

1

2



Simpler:Stable Matching Problem

- Goal. Given n men and n women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

	favorite ↓		least favorit ↓	
	1 st	2 nd	3 rd	
Xavier	Amy	Brenda	Claire	
Yuri	Brenda	Amy	Claire	
Zoran	Amy	Brenda	Claire	

Men's Preference Profile

Women's Preference Profile

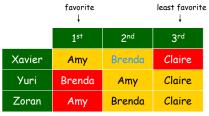
Stable Matching Problem

- Perfect matching: everyone is matched monogamously.
 - Each man gets exactly one woman.
 - Each woman gets exactly one man.

- Stability: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to current partners.
 - Unstable pair m-w could each improve by eloping.
- Stable matching: perfect matching with no unstable pairs.
- Stable matching problem. Given the preference lists of **n** men and **n** women, find a stable matching if one exists.

Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?


Men's Preference Profile

Women's Preference Profile

Stable Matching Problem

- Q. Is assignment X-C, Y-B, Z-A stable?
- A. No. Brenda and Xavier will hook up.

Men's Preference Profile

Women's Preference Profile

5

6

Stable Matching Problem

- Q. Is assignment X-A, Y-B, Z-C stable?
- A. Yes.

Men's Preference Profile

Women's Preference Profile

Stable Roommate Problem

- Q. Do stable matchings always exist?
- Not obvious a priori.
- Stable roommate problem.
 - 2n people; each person ranks others from 1 to 2n-1.
 - Assign roommate pairs so that no unstable pairs.

	I^{s_I}	2110	3 ^{ru}
Adam	В	С	D
Bob	С	Α	D
Chris	Α	В	D
David	Α	В	С

A-B, $C-D \Rightarrow B-C$ unstable A-C, $B-D \Rightarrow A-B$ unstable A-D, B-C ⇒ A-C unstable

Observation. Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962]
 Intuitive method that guarantees to find a stable matching.

```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
   Choose such a man m
   W = 1<sup>st</sup> woman on m's list to whom m has not yet proposed
   if (w is free)
        assign m and w to be engaged
   else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
   else
        w rejects m
}
```


Proof of Correctness: Termination

- Observation 1. Men propose to women in decreasing order of preference.
- Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."
- Claim. Algorithm terminates after at most n² iterations of while loop.
- Proof. Each time through the while loop a man proposes to a new woman.
 There are only n² possible proposals.

	1st	2 nd	3rd	4 th	5 th
Victor	Α	В	С	D	Е
Walter	В	С	D	Α	Е
Xavier	С	D	Α	В	Е
Yuri	D	Α	В	С	Е
Zoran	Α	В	С	D	Е

	1st	2 nd	3rd	4 th	5 th
Amy	W	X	У	Z	٧
Brenda	Х	У	Z	٧	W
Claire	У	Z	٧	W	X
Diane	Z	٧	W	Х	У
Erika	٧	W	Х	У	Z

n(n-1) + 1 proposals required

10

-

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- Proof. (by contradiction)
 - Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
 - But, Zoran proposes to everyone, since he ends up unmatched.

Proof of Correctness: Stability

- Claim. No unstable pairs.
- Proof. (by contradiction)
 - Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S*.

■ Case 1: Z never proposed to A. men propose in decreasing order of preference

⇒ Z prefers his GS partner to A.⇒ A-Z is stable.

Amy-Yuri Brenda-Zoran

Case 2: Z proposed to A.

⇒ A rejected Z (right away or later)

⇒ A prefers her GS partner to Z. \ \ \ women only trade up

⇒ A-Z is stable.

In either case A-Z is stable, a contradiction.

Summary

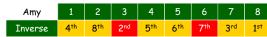
- Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.
- Q. How to implement GS algorithm efficiently?
- Q. If there are multiple stable matchings, which one does GS find?

Implementation for Stable Matching Algorithms

- Problem size
 - N=2n² words
 - 2n people each with a preference list of length n
 - 2n²log n bits
 - specifying an ordering for each preference list takes nlog n bits
- Brute force algorithm
 - Try all n! possible matchings
 - Do any of them work?
- Gale-Shapley Algorithm
 - n² iterations, each costing constant time as follows:

13

Efficient Implementation


- Efficient implementation. We describe O(n²) time implementation.
- Representing men and women.
 - Assume men are named 1, ..., n.
 - Assume women are named 1', ..., n'.
- Engagements.
 - Maintain a list of free men, e.g., in a queue.
 - Maintain two arrays wife[m], and husband[w].
 - set entry to 0 if unmatched
 - if m matched to w then wife[m]=w and husband[w]=m
- Men proposing.
 - For each man, maintain a list of women, ordered by preference.
 - Maintain an array count[m] that counts the number of proposals made by man m.

Efficient Implementation

- Women rejecting/accepting.
 - Does woman w prefer man m to man m'?
 - For each woman, create inverse of preference list of men.
 - Constant time access for each query after O(n) preprocessing.

Pref	8	3	7	1	4	5	6	2

for i = 1 to n
 inverse[pref[i]] = i

Amy prefers man 3 to 6
Since inverse [3] =2 < 7=inverse [6]

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

	1 st	2 nd	3 rd
Xavier	Α	В	С
Yuri	В	Α	С
Zoran	Α	В	С

	1 ^{s†}	2 nd	3 rd
Amy	У	X	Z
Brenda	X	У	Z
Claire	X	У	Z

- An instance with two stable matchings.
 - A-X, B-Y, C-Z.
 - A-Y, B-X, C-Z.

Understanding the Solution

- Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?
- Def. Man m is a valid partner of woman w if there exists some stable matching in which they are matched.
- Man-optimal assignment. Each man receives best valid partner (according to his preferences).
- Claim. All executions of GS yield a man-optimal assignment, which is a stable matching!
 - No reason a priori to believe that man-optimal assignment is perfect, let alone stable.
 - Simultaneously best for each and every man.

17

18

4

Man Optimality

S* ——

- Claim. GS matching S* is man-optimal.
- Proof. (by contradiction)
 - Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference ⇒ some man is rejected by a valid partner.
 - Let Y be the man who is the first such rejection, and let A be the women who is first valid partner that rejects him.
 - Let S be a stable matching where A and Y are matched.
 - In building S*, when Y is rejected, A forms (or reaffirms) engagement with a man, say Z, whom she prefers to Y.
 - Let B be Z's partner in S.
 - In building S*, Z is not rejected by any valid partner at the point when Y is rejected by A.
 - Thus, Z prefers A to B.
 - But A prefers Z to Y.
 - Thus A-Z is unstable in S. ■

since this is the first rejection by a valid partner

Stable Matching Summary

 Stable matching problem. Given preference profiles of n men and n women, find a stable matching.

no man and woman prefer to be with each other than with their assigned partner

- Gale-Shapley algorithm. Finds a stable matching in O(n²) time.
- Man-optimality. In version of GS where men propose, each man receives best valid partner.

w is a valid partner of m if there exist some stable matching where m and w are paired

Q. Does man-optimality come at the expense of the women?

Woman Pessimality

- Woman-pessimal assignment. Each woman receives worst valid partner.
- Claim. GS finds woman-pessimal stable matching S*.
- Proof.
 - Suppose A-Z matched in S*, but Z is not worst valid partner for A.
 - There exists stable matching S in which A is paired with a man, say Y, whom she likes less than Z.
 - Let B be Z's partner in S.
 - Z prefers A to B. ← man-optimality of S*
 - Thus, A-Z is an unstable in S. ■

21

Extensions: Matching Residents to Hospitals

- Ex: Men ≈ hospitals, Women ≈ med school residents.
- Variant 1. Some participants declare others as unacceptable.
- Variant 2. Unequal number of men and women.

e.g. resident A unwilling to work in Cleveland

Variant 3. Limited polygamy.

e.g. hospital X wants to hire 3 residents

- Def. Matching S is unstable if there is a hospital h and resident r such that:
 - h and r are acceptable to each other; and
 - either **r** is unmatched, or **r** prefers **h** to her assigned hospital; and
 - either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

22

4

Application: Matching Residents to Hospitals

- NRMP. (National Resident Matching Program)
 - Original use just after WWII.
 predates computer usage
 - Ides of March, 23,000+ residents.
- Rural hospital dilemma.
 - Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
 - Rural hospitals were under-subscribed in NRMP matching.
 - How can we find stable matching that benefits "rural hospitals"?
- Rural Hospital Theorem. Rural hospitals get exactly same residents in every stable matching!
- Note: Pre-1995 NRMP favored hospitals (they proposed). Changed in 1995 to favor residents.

Lessons Learned

- Powerful ideas learned in course.
 - Isolate underlying structure of problem.
 - Create useful and efficient algorithms.
- Potentially deep social ramifications. [legal disclaimer]

Deceit: Machiavelli Meets Gale-Shapley

- Q. Can there be an incentive to misrepresent your preference profile?
 - Assume you know men's propose-and-reject algorithm will be run.
 - Assume that you know the preference profiles of all other participants.
- Fact. No, for any man. Yes, for some women. No mechanism can guarantee a stable matching and be cheatproof.

	1 st	2 nd	3 rd
Xavier	Α	В	С
Yuri	В	Α	С
Zoran	Α	В	С

	1 st	2 nd	3 rd
Amy	У	Х	Z
Brenda	X	У	Z
Claire	X	У	Z

Women's True Preference Profile

		1 st	2 nd	3 rd	
	Amy	У	Z	X	
	Brenda	Х	У	Z	
	Claire	X	У	Z	
Amy lies					

_			