
1

CSE 421: Introduction to

Algorithms

Complexity and Representative
Problems

Paul Beame

2

Measuring efficiency:
The RAM model

� RAM = Random Access Machine

� Time ≈ # of instructions executed in an
ideal assembly language

� each simple operation (+,*,-,=,if,call) takes

one time step

� each memory access takes one time step

3

Complexity analysis

� Problem size N

� Worst-case complexity: max # steps

algorithm takes on any input of size N

� Best-case complexity: min # steps

algorithm takes on any input of size N

� Average-case complexity: avg # steps

algorithm takes on inputs of size N

4

Stable Matching

� Problem size
� N=2n2 words

� 2n people each with a preference list of length n
� 2n2log n bits

� specifying an ordering for each preference list takes nlog n bits

� Brute force algorithm
� Try all n! possible matchings

� Gale-Shapley Algorithm
� n2 iterations, each costing constant time

� For each man an array listing the women in preference order

� For each woman an array listing the preferences indexed by
the names of the men

� An array listing the current partner (if any) for each woman

� An array listing the preference index of the last woman each
man proposed to (if any)

5

Complexity

� The complexity of an algorithm associates a number

T(N), the worst/average-case/best time the algorithm

takes, with each problem size N.

� Mathematically,

� T is a function that maps positive integers giving

problem size to positive real numbers giving

number of steps.

6

Efficient = Polynomial Time

� Polynomial time

� Running time T(N) ≤≤≤≤ cNk+d for some c,d,k ≥ 0

� Why polynomial time?

� If problem size grows by at most a constant factor then

so does the running time

� E.g. T(2N) ≤≤≤≤ c(2N)k+d ≤≤≤≤ 2k(cNk+d)

� Polynomial-time is exactly the set of running times

that have this property

� Typical running times are small degree polynomials,

mostly less than N3, at worst N6, not N100

7

Complexity

Problem size N

T(N)

8

O-notation etc

� Given two positive functions f and g

� f(N) is O(g(N)) iff there is a constant c>0 so

that f(N) is eventually

always ≤≤≤≤ c g(N)

� f(N) is o(g(N)) iff the ratio f(N)/g(N) goes to 0
as N gets large

� f(N) is ΩΩΩΩ(g(N)) iff there is a constant εεεε>0 so

that f(N) is ≥≥≥≥ εεεε g(N) for infinitely

many values of N

� f(N) is ΘΘΘΘ(g(N)) iff f(N) is O(g(N)) and f(N) is ΩΩΩΩ(g(N))

Note: The definition of ΩΩΩΩ is the same as “f(N) is not o(g(N))”

9

Complexity

Problem size N

T(N)

10

5 Representative Problems

� Interval Scheduling
� Single resource

� Reservation requests

� Of form “Can I reserve it from start time s to
finish time f?”

� s <<<< f

11

h

e

b

h

e

b

Interval Scheduling

� Input. Set of jobs with start times and finish times.

� Goal. Find maximum cardinality subset of mutually compatible
jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

a

c

d

jobs don't overlap

12

Interval scheduling

� Formally
� Requests 1,2,…,n

� request i has start time si and finish time fi >>>> si

� Requests i and j are compatible iff either

� request i is for a time entirely before request j

� fi ≤≤≤≤ sj

� or, request j is for a time entirely before request i

� fj ≤≤≤≤ si

� Set A of requests is compatible iff every pair of
requests i,j∈ A, i≠≠≠≠j is compatible

� Goal: Find maximum size subset A of compatible
requests

13

Interval Scheduling

� We’ll see that an optimal solution can be
found using a “greedy algorithm”

� Myopic kind of algorithm that seems to have no
look-ahead

� These algorithms only work when the problem has
a special kind of structure

� When they do work they are typically very efficient

14

Weighted Interval Scheduling

� Same problem as interval scheduling except
that each request i also has an associated
value or weight wi

� wi might be

� amount of money we get from renting out the
resource for that time period

� amount of time the resource is being used

15

Weighted Interval Scheduling

� Input. Set of jobs with start times, finish times, and weights.

� Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

16

Weighted Interval Scheduling

� Ordinary interval scheduling is a special case of this

problem

� Take all wi =1

� Problem is quite different though

� E.g. one weight might dwarf all others

� “Greedy algorithms” don’t work

� Solution: “Dynamic Programming”

� builds up optimal solutions from smaller problems using a
compact table to store them

17

Bipartite Matching

� A graph G=(V,E) is bipartite iff
� V consists of two disjoint pieces X and Y such

that every edge e in E is of the form (x,y) where
x∈∈∈∈X and y∈∈∈∈Y

� Similar to stable matching situation but in that
case all possible edges were present

� M⊆⊆⊆⊆E is a matching in G iff no two edges in
M share a vertex

� Goal: Find a matching M in G of
maximum possible size

18

Bipartite Matching

� Input. Bipartite graph.

� Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

19

Bipartite Matching

� Models assignment problems
� X represents jobs, Y represents machines

� X represents professors, Y represents courses

� If |X|=|Y|=n
� G has perfect matching iff maximum matching has

size n

� Solution: polynomial-time algorithm using
“augmentation” technique
� also used for solving more general class of

network flow problems

20

Independent Set

� Given a graph G=(V,E)

� A set I⊆⊆⊆⊆V is independent iff no two nodes in I are

joined by an edge

� Goal: Find an independent subset I in G of

maximum possible size

� Models conflicts and mutual exclusion

21

Independent Set

� Input. Graph.

� Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4

22

Independent Set

� Generalizes
� Interval Scheduling

� Vertices in the graph are the requests

� Vertices are joined by an edge if they are not
compatible

� Bipartite Matching

� Given bipartite graph G=(V,E) create new
graph G’=(V’,E’) where

� V’=E

� Two elements of V’ (which are edges in G) are joined
if they share an endpoint in G

23

Bipartite Matching vs Independent
Set

1

2 3
4

5 6

7

1 2

3

4

5
6

78

8

9 9

G=(U∪∪∪∪V,E)
G’=(V’,E’)

24

Independent Set

� No polynomial-time algorithm is known
� But to convince someone that there was a large

independent set all you’d need to do is show it to
them

� they can easily convince themselves that the set is large
enough and independent

� Convincing someone that there isn’t one seems
much harder

� We will show that Independent Set is
NP-complete
� Class of all the hardest problems that have the

property above

25

Competitive Facility Location

� Two players competing for market share in a
geographic area
� e.g. McDonald’s, Burger King

� Rules:
� Region is divided into n zones, 1,…,n

� Each zone i has a value bi

� Revenue derived from opening franchise in that
zone

� No adjacent zones may contain a franchise

� i.e., zoning regulations limit density
� Players alternate opening franchises

� Find: Given a target total value B is there a strategy
for the second player that always achieves ≥ B?

26

Competitive Facility Location

� Model geography by

� A graph G=(V,E) where

� V is the set {1,…,n} of zones

� E is the set of pairs (i,j) such that i and j

are adjacent zones

� Observe:

� The set of zones with franchises will form

an independent set in G

27

Competitive Facility Location

10 1 5 15 5 1 5 1 15 10

Target B = 20 achievable ?

What about B = 25 ?

28

Competitive Facility Location

� Checking that a strategy is good seems hard
� You’d have to worry about all possible responses

at each round!

� a giant search tree of possibilities

� Problem is PSPACE-complete
� Likely strictly harder than NP-complete problems

� PSPACE-complete problems include

� Game-playing problems such as n×n chess
and checkers

� Logic problems such as whether quantified
boolean expressions are always true

� Verification problems for finite automata

29

Five Representative Problems

� Variations on a theme: independent set.

� Interval scheduling: O(n log n) greedy algorithm.

� Weighted interval scheduling: O(n log n) dynamic
programming algorithm.

� Bipartite matching: O(nk) max-flow based
algorithm.

� Independent set: NP-complete.

� Competitive facility location: PSPACE-complete.

