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CSE 421:  Introduction to 

Algorithms

Multiplicative Weights Update Method

Paul Beame
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Multiplicative Weights Update Method

� Some Applications:
� Learning

� Online selection among experts

� Boosting success of learning algorithms
� e.g. Adaboost

� Optimization
� Approximation algorithms for NP-hard 

problems

� Solving semi-definite programs 
efficiently
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Multiplicative Weights Update Method

� Method has been used in many variants over 

the years

� From a recent survey by Arora, Hazan, Kale:

� This “meta algorithm and its analysis are simple 

and useful enough that they should be viewed as 

a basic tool taught to all algorithms students 

together with divide-and-conquer, dynamic 

programming, random sampling, and the like.”
� http://www.cs.princeton.edu/~satyen/papers/mw-survey.pdf
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� Simple case: Stock market direction

� n experts

� every day each expert i makes a binary 
guess/prediction g(t)

i (up=+1 or down=-1)

� at end of the day can observe the outcome of what 
the market did that day: o(t)

� After T days, best expert i* gets return                   

ri* = maxi Σt o(t) g(t)
i

� The return ri*=T-2mi* where mi* = # of mistakes in 
direction made by the best expert

� Goal: Find a strategy that chooses an expert each 
day t knowing only o(s), g(s)

i for s<t and does not 
make many more mistakes than the best expert does

Online choice from experts
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Warm-up: Weighted Majority 
Algorithm (Littlestone-Warmuth)

� Choose ε ≤1/2

� Maintain a weight (confidence) in each expert 
wi and each day choose the prediction to be 
the weighted majority of their guesses; i.e. the 

sign of Σj wj g
(t)

i

� Initially set each wi=1

� No reason to prefer any expert

� After each day replace wi by wi (1- ε) if expert i 
made a mistake

� Write w(t)
i for value of wi at the start of tth day
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Weighted Majority Algorithm

� Notation: mi(t) = # of mistakes made by 
expert i after t steps

m(t) = # of mistakes made by 
weighted majority after t steps

� Theorem: For any expert i,

m(T) ≤ (2/ε) ln n+ 2(1+ε)mi(T)
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Weighted Majority Algorithm
Proof

� Theorem: If ε ≤ ½ then for any expert i,

m(T) ≤ (2/ε) ln n+ 2(1+ε)mi(T)

� Proof: 
� Since each error accumulates a (1-ε) factor            

w(t+1)
i = (1-ε) mi(t)

� Define “potential”= sum of expert weights:

Φ(t) = Σi w(t)
i 

� By definition Φ(1) =n

� Prediction is wrong only if at least ½ the total 
weight of the experts is wrong

� Potential will decrease by at least ε Φ(t) /2
� i.e., Φ(t+1) ≤ (1 - ε/2) Φ(t)

8

Weighted Majority Algorithm
Proof continued

� Theorem: For any expert i,

m(T) ≤ (2/ε) ln n+ 2(1+ε)mi(T)

� Proof (continued): 
� w(t+1)

i = (1-ε) mi(t)

� Φ(1) =n, Φ(t+1) ≤ (1 - ε/2) Φ(t)

� So Φ(T+1) ≤ n (1 - ε/2)m(T)

� However Φ(T+1) ≥ w(T+1)
i = (1-ε) mi(T) so

n (1 - ε/2)m(T) ≥ (1-ε) mi(T) 

� Taking natural logarithms we get

m(T) ln (1 - ε/2) + ln n ≥ mi(T) ln (1-ε)

� Theorem follows from –x ≥ ln (1-x) ≥ - x - x2

for x ≤1/2

� i.e. m(T)(- ε/2) + ln n ≥ mi(T) (-ε-ε2)
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More general experts scenario

� More general scenario:

� n experts

� every day each expert i chooses course of action

� after it has been selected we find out that the ith

expert’s choice on day t incurs a cost m(t)
i                        

with -1 ≤ m(t)
i ≤ 1  (-ve cost implies a benefit)

� Goal: Find a (randomized) strategy of small expected 

total cost to choose course of action each day t

knowing only m(s)
i values for s<t

� In the simple case the costs m(t)
i were

� 0 (correct prediction) or 1 (mistake)
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(Randomized) Multiplicative Weights 
Update Method

� Choose ε ≤1/2
� Maintain a weight (confidence) in each expert w(t)

i
and each day choose course of action of  ith expert 
with probability proportional to its current weight; i.e. 
with prob p(t)

i= w(t)
i /Σj w(t)

j

� Set each w(1)
i=1

� No reason to prefer any expert at start

� Set w(t+1)
i =w(t)

i (1- ε m(t)
i)

� Define Φ(t) = Σj w(t)
i as before so p(t)

i = w(t)
i/ Φ

(t)

� Note: Average behavior similar to weighted majority 
for binary predictions (bias of tth prediction is the 
average prediction, not its sign)
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Multiplicative Weights Update Method

� Expected cost of choice in the tth step is              
Mt=Σi p(t)

i m(t)
i = Σi w(t)

i m
(t)

i / Φ
(t)

� Notation:

Mi(t) = Σs≤ t m(s)
i = total cost for expert i in 

first t steps

M(t) = Σs≤ t Ms=expect total cost of 
multiplicative update

choices in first t steps

� Theorem: For any expert i,

M(T) ≤ (1/ε) ln n+ Mi(T) + ε Σt ≤ T |m(t)
i|
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Multiplicative Weights Update Method

� Theorem: If ε ≤ ½ then for any expert i,

M(T) ≤ (1/ε) ln n+ Mi(T) + ε Σt ≤ T |m(t)
i|

� Proof: 

� Now Φ(t+1) = Σi w(t+1)
i 

= Σi w(t)
i (1- ε m(t)

i)

=Φ(t) – ε Σi p(t)
i Φ

(t) m(t)
i since p(t)

i = w(t)
i/ Φ

(t)

= Φ(t)(1 – ε Σi p(t)
i m

(t)
i) = Φ(t) (1 – ε Mt)

≤ Φ(t) e- ε Mt since 1+x ≤ ex

� By definition Φ(1) =n so                                                      
Φ(T+1) ≤ n e- ε (M1+...+ MT) = n e- ε M(T)
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Multiplicative Weights Update Method

� Theorem: If ε ≤ ½ then for any expert i,

M(T) ≤ (1/ε) ln n+ Mi(T) + ε Σt ≤ T |m(t)
i|

� Proof (continued): 

� Φ(T+1) ≤ n e- ε M(T)

� But Φ(T+1) ≥ w(T+1)
i 

= (1-ε m(1)
i) (1-ε m(2)

i)... (1-ε m(T)
i)

� Taking natural logarithms we get

- ε M(T) + ln n ≥ Σt ≤ T ln (1-ε m(t)
i)

� Theorem follows from ln (1-x) ≥ -x-x2 and                      

ln (1+x) ≥ x-x2 for 0 ≤ x ≤ ½
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Multiplicative Weights Update Method

Corollary: If ε ≤ ½ and all costs are positive then for 
any expert i,

M(T) ≤ (1/ε) ln n+ (1+ε) Mi(T) 

Note: The same holds if Mi(T) is replaced by the cost of 
the best fixed random distribution of experts since 
one might just as well pick the best one.

The guarantee holds even if an adversary gets to 
choose the costs at time t after seeing the entire run 
of the algorithm up to time t

Lots of variants when there is a cost to change experts 
or one obtains only partial information about 
outcomes
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Simple Application: Approximating 
Minimum Set Cover

Minimum-Set-Cover:
� Given a universe U={1,...,n}, a collection 

S1,…,Sm of subsets of U find a minimum 
number OPT of sets in the collection that 
covers every element of U.

Where are the experts?
� Each element i of U will be an expert

What are the time steps?
� Each time step t will correspond to a set Sjt
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Simple Application: Approximating 
Minimum Set Cover

What are the costs?

� m(t)
i=1 if i∈∈∈∈Sjt

and = 0 if not

What do the weights look like?

� Set ε=1 (will use even simpler analysis here)

� Now w(1)
i =1 and w(t+1)

i = w(t)
i (1- ε m(t)

i) so w(t+1)
i=0

iff i is contained in Sj1
∪∪∪∪...∪∪∪∪Sjt

We will have an adversary order the sets:
� At step t the adversary will choose the set Sjt

that 
has the most uncovered elements (Greedy choice)

� the set maximizing Σi∈∈∈∈Sjt
p(t)

i = Σi∈∈∈∈Sjt
w(t)

i / Φ(t)
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Simple Application: Approximating 
Minimum Set Cover

� Adversary makes Greedy choice of set Sjt

maximizing Σi∈∈∈∈Sjt
p(t)

i

� Now p(t)
1,..., p

(t)
n is a probability distribution on 

elements

� Since OPT sets are enough to cover all elements 
there must exist some set Sjt

with                                   

1/OPT ≤ Σi∈∈∈∈Sjt
p(t)

i = Σi∈∈∈∈Sjt
w(t)

i / Φ(t) 

� So Σi∈∈∈∈Sjt
w(t)

i ≥ Φ
(t)  /OPT

and Φ(t+1) = Φ(t) - ε Σi∈∈∈∈Sjt
w(t)

i ≤ Φ(t) (1 - 1/OPT)

< Φ(t) e-1/OPT

� It follows that Φ(t+1) < n e-t/OPT
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Simple Application: Approximating 
Minimum Set Cover

� It follows that Φ(t+1) < n e-t/OPT

� Now Φ(t+1) is just the total # of uncovered 
elements after choice of first t sets
� When t/OPT ≥ ln n we have Φ(t+1) < n e-ln n =1 and 

every element must be covered by the adversary’s 
choice of sets so far

� This says that the Greedy algorithm (the 

adversary’s strategy) will produce a set cover 

of size at most  ln n·OPT

� This is essentially the best possible approximation 
factor unless P=NP


