CSE 421: Introduction to Algorithms

Multiplicative Weights Update Method

Paul Beame

Multiplicative Weights Update Method

- Some Applications:
 - Learning
 - Online selection among experts
 - Boosting success of learning algorithms
 - e.g. Adaboost
 - Optimization
 - Approximation algorithms for NP-hard problems
 - Solving semi-definite programs efficiently

Multiplicative Weights Update Method

- Method has been used in many variants over the years
- From a recent survey by Arora, Hazan, Kale:
 - This "meta algorithm and its analysis are simple and useful enough that they should be viewed as a basic tool taught to all algorithms students together with divide-and-conquer, dynamic programming, random sampling, and the like."
 - http://www.cs.princeton.edu/~satyen/papers/mw-survey.pdf

Online choice from experts

- Simple case: Stock market direction
 - n experts
 - every day each expert i makes a binary guess/prediction g^(t), (up=+1 or down=-1)
 - at end of the day can observe the outcome of what the market did that day: o^(t)
 - After T days, best expert i* gets return $\mathbf{r}_{i*} = \max_i \sum_{i} \mathbf{o}^{(t)} \mathbf{q}^{(t)}_i$
 - The return r_{i*}=T-2m_{i*} where m_{i*} = # of mistakes in direction made by the best expert
- Goal: Find a strategy that chooses an expert each day t knowing only o^(s), g^(s), for s<t and does not make many more mistakes than the best expert does

1

Warm-up: Weighted Majority Algorithm (Littlestone-Warmuth)

- Choose ε ≤1/2
- Maintain a weight (confidence) in each expert
 w_i and each day choose the prediction to be the weighted majority of their guesses; i.e. the sign of Σ_i w_i g^(t)_i
 - Initially set each w_i=1
 - No reason to prefer any expert
 - After each day replace w_i by w_i (1- ε) if expert i made a mistake
- Write w^(t) for value of w_i at the start of tth day

Weighted Majority Algorithm

Notation: m_i(t) = # of mistakes made by expert i after t steps
 m(t) = # of mistakes made by weighted majority after t steps

Theorem: For any expert i,
 m(T) ≤ (2/ε) ln n+ 2(1+ε)m_i(T)

Weighted Majority Algorithm Proof

- Theorem: If $\varepsilon \le \frac{1}{2}$ then for any expert i, $m(T) \le (\frac{2}{\epsilon}) \ln n + 2(1+\epsilon)m_i(T)$
- Proof:
 - Since each error accumulates a $(1-\epsilon)$ factor $w^{(t+1)}_i = (1-\epsilon)^{m_i(t)}$
 - Define "potential"= sum of expert weights: Φ^(t) = Σ_i w^(t)_i
 - By definition $\Phi^{(1)} = \mathbf{n}$
 - Prediction is wrong only if at least ½ the total weight of the experts is wrong
 - Potential will decrease by at least $\epsilon \Phi^{(t)}/2$
 - i.e., $\Phi^{(t+1)} \le (1 \epsilon/2) \Phi^{(t)}$

Weighted Majority Algorithm Proof continued

Theorem: For any expert i, $m(T) \leq (2/\epsilon) \ln n + 2(1+\epsilon)m_i(T)$ Proof (continued): $w^{(t+1)}_i = (1-\epsilon)m_i(t)$ $\Phi^{(1)} = n, \Phi^{(t+1)} \leq (1 - \epsilon/2)\Phi^{(t)}$ So $\Phi^{(T+1)} \leq n (1 - \epsilon/2)^{m(T)}$ However $\Phi^{(T+1)} \geq w^{(T+1)}_i = (1-\epsilon)m_i(T)$ so $n (1 - \epsilon/2)^{m(T)} \geq (1-\epsilon)m_i(T)$ Taking natural logarithms we get $m(T) \ln (1 - \epsilon/2) + \ln n \geq m_i(T) \ln (1-\epsilon)$ Theorem follows from $-x \geq \ln (1-x) \geq -x - x^2$ for $x \leq 1/2$ i.e. $m(T)(-\epsilon/2) + \ln n \geq m_i(T) (-\epsilon-\epsilon^2)$

5

More general experts scenario

- More general scenario:
 - n experts
 - every day each expert i chooses course of action
 - after it has been selected we find out that the ith expert's choice on day t incurs a cost m^(t)_i with -1 ≤ m^(t)_i ≤ 1 (-ve cost implies a benefit)
- Goal: Find a (randomized) strategy of small expected total cost to choose course of action each day t knowing only m^(s), values for s<t
- In the simple case the costs m^(t), were
 - 0 (correct prediction) or 1 (mistake)

(Randomized) Multiplicative Weights Update Method

- Choose ε ≤1/2
- Maintain a weight (confidence) in each expert w^(t)_i and each day choose course of action of ith expert with probability proportional to its current weight; i.e. with prob p^(t)_i = w^(t)_i /Σ_i w^(t)_i
 - Set each w⁽¹⁾_i=1
 - No reason to prefer any expert at start
 - Set $\mathbf{w}^{(t+1)}_{i} = \mathbf{w}^{(t)}_{i} (1 \epsilon \mathbf{m}^{(t)}_{i})$
- Define $\Phi^{(t)} = \sum_{i} \mathbf{w}^{(t)}_{i}$ as before so $\mathbf{p}^{(t)}_{i} = \mathbf{w}^{(t)}_{i} / \Phi^{(t)}$
- Note: Average behavior similar to weighted majority for binary predictions (bias of tth prediction is the average prediction, not its sign)

Multiplicative Weights Update Method

- Expected cost of choice in the tth step is $M_t = \sum_i p^{(t)} m^{(t)}_i = \sum_i w^{(t)} m^{(t)}_i / \Phi^{(t)}$
- Notation:

$$\label{eq:Mi} \begin{split} \textbf{M}_i(t) = \boldsymbol{\Sigma}_{s \leq \, t} \; \boldsymbol{m^{(s)}}_i = \text{total cost for expert } i \text{ in } \\ \text{first } t \text{ steps} \end{split}$$

- $M(t) = \sum_{s \le t} M_s$ =expect total cost of multiplicative update choices in first t steps
- Theorem: For any expert i, $M(T) \leq (1/\epsilon) \ln n + M_i(T) + \epsilon \sum_{t \leq T} |m^{(t)}_i|$

Multiplicative Weights Update Method

• Theorem: If $\varepsilon \leq \frac{1}{2}$ then for any expert i, $M(T) \leq (1/\varepsilon) \ln n + M_i(T) + \varepsilon \sum_{t \leq T} |m^{(t)}_i|$ • Proof: • Now $\Phi^{(t+1)} = \sum_i w^{(t+1)}_i$ $= \sum_i w^{(t)}_i (1 - \varepsilon m^{(t)}_i)$ $= \Phi^{(t)} - \varepsilon \sum_i p^{(t)}_i \Phi^{(t)} m^{(t)}_i \text{ since } p^{(t)}_i = w^{(t)}_i / \Phi^{(t)}$ $= \Phi^{(t)} (1 - \varepsilon \sum_i p^{(t)}_i m^{(t)}_i) = \Phi^{(t)} (1 - \varepsilon M_t)$ $\leq \Phi^{(t)} e^{-\varepsilon M_t} \text{ since } 1 + x \leq e^x$ • By definition $\Phi^{(1)} = n$ so $\Phi^{(T+1)} \leq n e^{-\varepsilon} (M_1 + ... + M_T) = n e^{-\varepsilon} M(T)$

9

Multiplicative Weights Update Method

Theorem: If $\varepsilon \le \frac{1}{2}$ then for any expert i,

 $M(T) \leq (1/\epsilon) \text{ In } n + M_i(T) + \epsilon \sum_{t \leq T} |m^{(t)}_i|$

- Proof (continued):
 - $\Phi^{(T+1)} \le n e^{-\epsilon M(T)}$
 - But $\Phi^{(T+1)} \ge \mathbf{w}^{(T+1)}_{i}$
 - $= (1 \epsilon \ m^{(1)}{}_i) \ (1 \epsilon \ m^{(2)}{}_i) \dots \ (1 \epsilon \ m^{(T)}{}_i)$
 - Taking natural logarithms we get
 - $\epsilon M(T)$ + ln $n \ge \sum_{t \le T} \ln (1 \epsilon m^{(t)}_{i})$
 - Theorem follows from $\ln (1-x) \ge -x-x^2$ and $\ln (1+x) \ge x-x^2$ for $0 \le x \le \frac{1}{2}$

13

Simple Application: Approximating Minimum Set Cover

Minimum-Set-Cover:

 Given a universe U={1,...,n}, a collection S₁,...,S_m of subsets of U find a minimum number OPT of sets in the collection that covers every element of U.

Where are the experts?

Each element i of U will be an expert

What are the time steps?

Each time step t will correspond to a set S_{it}

Multiplicative Weights Update Method

- Corollary: If $\varepsilon \le \frac{1}{2}$ and all costs are positive then for any expert i, $M(T) \le (1/\varepsilon) \ln n + (1+\varepsilon) M_i(T)$
- Note: The same holds if $M_i(T)$ is replaced by the cost of the best fixed random distribution of experts since one might just as well pick the best one.
- The guarantee holds even if an adversary gets to choose the costs at time t after seeing the entire run of the algorithm up to time t
- Lots of variants when there is a cost to change experts or one obtains only partial information about outcomes

Simple Application: Approximating Minimum Set Cover

What are the costs?

- $\mathbf{m}^{(t)}_{i}=1$ if $i \in S_{j_{t}}$ and = 0 if not
- What do the weights look like?
 - Set ɛ=1 (will use even simpler analysis here)
 - Now $\mathbf{w}^{(1)}_{i} = 1$ and $\mathbf{w}^{(t+1)}_{i} = \mathbf{w}^{(t)}_{i}$ $(1 \varepsilon \mathbf{m}^{(t)}_{i})$ so $\mathbf{w}^{(t+1)}_{i} = \mathbf{0}$ iff i is contained in $\mathbf{S}_{i_{1}} \cup \dots \cup \mathbf{S}_{i_{t}}$

We will have an adversary order the sets:

- At step t the adversary will choose the set S_j, that has the most uncovered elements (Greedy choice)
 - the set maximizing $\sum_{i \in S_{j_t}} p^{(t)}_i = \sum_{i \in S_{j_t}} w^{(t)}_i / \Phi^{(t)}$

Simple Application: Approximating Minimum Set Cover

- Adversary makes Greedy choice of set S_{jt} maximizing Σ_{i∈Si}, p^(t)i
 - Now p^(t)₁,..., p^(t)_n is a probability distribution on elements
 - Since OPT sets are enough to cover all elements there must exist some set S_{it} with
 - $1/\text{OPT} \leq \sum\nolimits_{i \in S_{j_t}} p^{(t)}{}_i = \sum\nolimits_{i \in S_{j_t}}^{'\iota} w^{(t)}{}_i \; / \; \Phi^{(t)}$
 - So $\sum_{i \in S_{j_t}} \mathbf{w}^{(t)}_i \ge \Phi^{(t)} / \text{OPT}$ and $\Phi^{(t+1)} = \Phi^{(t)} - \epsilon \sum_{i \in S_{j_t}} \mathbf{w}^{(t)}_i \le \Phi^{(t)} (1 - 1 / \text{OPT})$ $< \Phi^{(t)} e^{-1 / \text{OPT}}$
 - It follows that Φ^(t+1) < n e^{-t/OPT}

17

Simple Application: Approximating Minimum Set Cover

- It follows that \$\Phi^{(t+1)} < n e^{-t/OPT}\$</p>
- Now Φ^(t+1) is just the total # of uncovered elements after choice of first t sets
 - When t/OPT ≥ ln n we have Φ^(t+1) < n e^{-ln n} =1 and every element must be covered by the adversary's choice of sets so far
- This says that the Greedy algorithm (the adversary's strategy) will produce a set cover of size at most In n-OPT
 - This is essentially the best possible approximation factor unless P=NP