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CSE 421:  Introduction to 

Algorithms

Greedy Algorithms

Paul Beame
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Greedy Algorithms

� Hard to define exactly but can give general 

properties

� Solution is built in small steps

� Decisions on how to build the solution are made to 

maximize some criterion without looking to the 

future

� Want the ‘best’ current partial solution as if the 

current step were the last step

� May be more than one greedy algorithm 

using different criteria to solve a given 

problem
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Greedy Algorithms

� Greedy algorithms
� Easy to produce
� Fast running times
� Work only on certain classes of problems

� Hard part is showing that they are correct

� Two methods for proving that greedy algorithms 
do work
� Greedy algorithm stays ahead

� At each step any other algorithm will have a worse 
value for some criterion that eventually implies 
optimality

� Exchange Argument
� Can transform any other solution to the greedy 

solution at no loss in quality
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Interval Scheduling

� Interval Scheduling
� Single resource

� Reservation requests

� Of form “Can I reserve it from start time 
s to finish time f?”

� s <<<< f
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Interval Scheduling

� Interval scheduling.

� Job j starts at sj and finishes at fj>sj.

� Two jobs i and j compatible if they don't overlap: fi ≤ sj or fj ≤ si

� Goal: find maximum size subset of mutually compatible jobs.
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Greedy Algorithms for Interval 
Scheduling

� What criterion should we try?

� Earliest start time si

� Shortest request time fi-si

� Earliest finish fime fi
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Greedy Algorithms for Interval 
Scheduling

� What criterion should we try?
� Earliest start time si

� Doesn’t work

� Shortest request time fi-si

� Doesn’t work

� Even fewest conflicts doesn’t work

� Earliest finish fime fi

� Works
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Greedy Algorithm for Interval 
Scheduling

R←set of all requests

A←∅∅∅∅

While R≠∅∅∅∅ do

Choose request i∈∈∈∈R with smallest 
finishing time fi

Add request i to A

Delete all requests in R that are not 
compatible with request i

Return A



9

Greedy Algorithm for Interval 
Scheduling

� Claim: A is a compatible set of requests and 
these are added to A in order of finish time
� When we add a request to A we delete all 

incompatible ones from R

� Claim: For any other set O⊆⊆⊆⊆R of compatible 
requests then if we order requests in A and O
by finish time then for each k:
� If O contains a kth request then so does A and

� the finish time of the kth request in A, is ≤≤≤≤ the 
finish time of the kth request in O,   i.e. “ak ≤≤≤≤ ok” 
where ak and ok are the respective finish times

Enough to prove that A is optimal
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Inductive Proof of Claim: ak≤≤≤≤ok

� Base Case: This is true for the first request in A since 
that is the one with the smallest finish time

� Inductive Step: Suppose ak≤≤≤≤ok
� By definition of compatibility

� If O contains a k+1st request r then the start time of that 
request must be after ok and thus after ak

� Thus r is compatible with the first k requests in A
� Therefore 

� A has at least k+1 requests since a compatible one is 
available after the first k are chosen

� r was among those considered by the greedy algorithm for 
that k+1st request in A

� Therefore by the greedy choice the finish time of r which 
is ok+1 is at least the finish time of that k+1st request in A
which is ak+1
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Interval Scheduling:  Analysis

Therefore we have:

� Theorem. Greedy algorithm is optimal.

� Alternative Proof. (by contradiction)
� Assume greedy is not optimal, and let's see what happens.

� Let a1, a2, ... ak denote set of jobs selected by greedy.

� Let o1, o2, ... om denote set of jobs in the optimal solution with
a1 = o1, a2 = o2, ..., ak = ok for the largest possible value of k. 

o1 o2 or

a1 a1 ar ak+1

. . .

Greedy:

OPT: ok+1

why not replace job ok+1

with job ak+1?

job ak+1 finishes before ok+1
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Sort jobs by finish times so that 0 ≤≤≤≤ f1 ≤≤≤≤ f2 ≤≤≤≤ ... ≤≤≤≤ fn.

A ←←←← φφφφ

last ←←←← 0

for j = 1 to n {

if (last ≤≤≤≤ sj)

A ←←←← A ∪∪∪∪ {j}

last ←←←← fj
}

return A  

Interval Scheduling:  Greedy 
Algorithm Implementation

O(n log n)

O(n)
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Scheduling All Intervals:
Interval Partitioning

� Interval partitioning.

� Lecture j starts at sj and finishes at fj.

� Goal: find minimum number of classrooms to schedule all lectures 

so that no two occur at the same time in the same room.

� Example: This schedule uses 4 classrooms to schedule 10 
lectures.
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Interval Partitioning

� Interval partitioning.

� Lecture j starts at sj and finishes at fj.

� Goal: find minimum number of classrooms to schedule all lectures 

so that no two occur at the same time in the same room.

� Example: This schedule uses only 3 classrooms
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Interval Partitioning:  Lower Bound 
on Optimal Solution

� Definition.  The depth of a set of open intervals is the maximum number 
that contain any given time.

� Key observation. Number of classrooms needed  ≥ depth.

� Ex: Depth of schedule below = 3  ⇒ schedule below is optimal.

� Q. Does there always exist a schedule equal to depth of intervals?

Time
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A simple greedy algorithm

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

For i=1 to n
j←1
While (request i not scheduled)

lastj← finish time of the last request 
currently scheduled on resource j

if si≥lastj then schedule request i on 
resource j
j←j+1

End While
End For
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Interval Partitioning:  Greedy 
Analysis

� Observation.  Greedy algorithm never schedules two 
incompatible lectures in the same classroom.

� Theorem. Greedy algorithm is optimal.

� Proof.
� Let d = number of classrooms that the greedy algorithm 

allocates.

� Classroom d is opened because we needed to schedule a job, 
say j, that is incompatible with all d-1 other classrooms.

� Since we sorted by start time, all these incompatibilities are 
caused by lectures that start no later than sj.

� Thus, we have d lectures overlapping at time sj + εεεε.

� Key observation  ⇒ all schedules use ≥≥≥≥ d classrooms.  ▪
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A simple greedy algorithm

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

For i=1 to n
j←1
While (request i not scheduled)

lastj← finish time of the last request 
currently scheduled on resource j

if si≥lastj then schedule request i on 
resource j
j←j+1

End While
End For

O(n log n) time

May be slow

O(nd)

which may be Ω(n2)
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A more efficient implementation

Sort requests in increasing order of start times (s1,f1),…,(sn,fn)

d ←←←← 1

Schedule request 1 on resource 1

last1←←←←f1

Insert 1 into priority queue Q with key = last1

For i=2 to n

j ←findmin(Q)

if si≥lastj then 

schedule request i on resource j

lastj ←←←← fi

Increasekey(j,Q) to lastj

else

d ←←←← d+1

schedule request i on resource d

lastd←←←←fi

Insert d into priority queue Q with key = lastd

End For

O(n log n) time

O(n log d)

O(n log n)

20

Greedy Analysis Strategies

� Greedy algorithm stays ahead. Show that after each 
step of the greedy algorithm, its solution is at least as 
good as any other algorithm's. 

� Exchange argument. Gradually transform any 
solution to the one found by the greedy algorithm 
without hurting its quality.

� Structural. Discover a simple "structural" bound 
asserting that every possible solution must have a 
certain value. Then show that your algorithm always 
achieves this bound.
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Scheduling to Minimize Lateness

� Scheduling to minimize lateness
� Single resource as in interval scheduling but instead of start 

and finish times request i has
� Time requirement ti which must be scheduled in a 

contiguous block
� Target deadline di by which time the request would like 

to be finished
� Overall start time s

� Requests are scheduled by the algorithm into time intervals 
[si,fi] such that ti=fi-si

� Lateness of schedule for request i is
� If di <<<< fi then request i is late by Li= fi-di otherwise its 

lateness Li= 0
� Maximum lateness L=maxi Li

� Goal: Find a schedule for all requests (values of si and fi for 
each request i) to minimize the maximum lateness, L
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Scheduling to Minimizing Lateness

� Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2
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Minimizing Lateness:  Greedy 
Algorithms

� Greedy template.  Consider jobs in some order. 

� [Shortest processing time first] Consider jobs in 
ascending order of processing time tj.

� [Earliest deadline first] Consider jobs in ascending 
order of deadline dj.

� [Smallest slack] Consider jobs in ascending order 
of slack dj - tj.
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� Greedy template.  Consider jobs in some order. 

� [Shortest processing time first] Consider jobs in 
ascending order of processing time tj.

� [Smallest slack] Consider jobs in ascending order 
of slack dj - tj.

Minimizing Lateness:  Greedy 
Algorithms

counterexample
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Greedy Algorithm:                     
Earliest Deadline First

� Order requests in increasing order of 
deadlines

� Schedule the request with the earliest 
deadline as soon as the resource 
becomes available
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort deadlines in increasing order  (d1 ≤≤≤≤ d2 ≤≤≤≤ … ≤≤≤≤ dn)

f ← s

for i←←←←1 to n to

si ←←←←f

fi ←←←← si+ti

f←←←←fi

end for

Minimizing Lateness:  Greedy 
Algorithm

� Greedy algorithm.  Earliest deadline first.
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Proof for Greedy Algorithm: 
Exchange Argument

� We will show that if there is another 
schedule O (think optimal schedule) 
then we can gradually change O so that 

� at each step the maximum lateness in O

never gets worse

� it eventually becomes the same cost as A
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Minimizing Lateness: No Idle Time

� Observation. There exists an optimal schedule with 
no idle time.

� Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12
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Minimizing Lateness: Inversions

� Definition.  An inversion in schedule S is a pair of 
jobs i and j such that di < dj but j scheduled before i.

� Observation. Greedy schedule has no inversions.

� Observation. If a schedule (with no idle time) has an 
inversion, it has one with a pair of inverted jobs 
scheduled consecutively (by transitivity of <).

ijbefore swap

inversion
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Minimizing Lateness: Inversions

� Definition. An inversion in schedule S is a pair of 

jobs i and j such that  di < dj but j scheduled before i.

� Claim.  Swapping two adjacent, inverted jobs 

reduces the number of inversions by one and does 

not increase the max lateness.

ij

i j

before swap

after swap

f'j

fi

inversion
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Minimizing Lateness: Inversions

� If dj >>>> di but j is scheduled in O immediately 

before i then swapping requests i and j to get 

schedule O’ does not increase the maximum 

lateness

� Lateness Li’≤≤≤≤ Li since i is scheduled earlier in O’
than in O

� Requests i and j together occupy the same total 

time slot in both schedules

� All other requests k≠≠≠≠i,j have Lk’=Lk

� fj’=fi so Lj’= f’j-dj =fi-dj<<<< fi-di=Li

� Maximum lateness has not increased!
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Optimal schedules and inversions

� Claim: There is an optimal schedule 
with no idle time and no inversions

� Proof:

� By previous argument there is an optimal 

schedule O with no idle time

� If O has an inversion then it has a 

consecutive pair of requests in its 

schedule that are inverted and can be 

swapped without increasing lateness
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Optimal schedules and inversions

� Eventually these swaps will produce an 
optimal schedule with no inversions

� Each swap decreases the number of 

inversions by 1

� There are a bounded number of (at most  

n(n-1)/2) inversions (we only care that this 

is finite.)

QED
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Idleness and Inversions are the only 
issue

� Claim: All schedules with no inversions and no idle 
time have the same maximum lateness

� Proof
� Schedules can differ only in how they order requests with 

equal deadlines

� Consider all requests having some common deadline d

� Maximum lateness of these jobs is based only on the finish 
time of the last of these jobs but the set of these requests 
occupies the same time segment in both schedules

� Last of these requests finishes at the same time in any 
such schedule.

35

Earliest Deadline First is optimal

� We know that
� There is an optimal schedule with no idle 

time or inversions

� All schedules with no idle time or 
inversions have the same maximum 
lateness

� EDF produces a schedule with no idle time 
or inversions

� Therefore 
� EDF produces an optimal schedule
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Single-source shortest paths

� Given an (un)directed graph G=(V,E)
with each edge e having a non-negative
weight w(e) and a vertex v

� Find length of shortest paths from v to 
each vertex in G
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A greedy algorithm

� Dijkstra’s Algorithm:
� Maintain a set S of vertices whose shortest paths 

are known

� initially S={s}

� Maintaining current best lengths of paths that only 

go through S to each of the vertices in G

� path-lengths to elements of S will be right,  to 

V-S they might not be right

� Repeatedly add vertex v to S that has the shortest 

path-length of any vertex in V-S

� update path lengths based on new paths 

through v
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Dijsktra’s Algorithm

Dijkstra(G,w,s)

S←{s}

d[s]←0

while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one 
with the minimum value of d[u]+w(e)

S←S∪ {v}

d[v]←d[u]+w(e)

pred[v]←u

*For each v∉S maintain d’[v]=minimum value of 
d[u]+w(e) over all vertices u∈S s.t. e=(u,v) is in of G
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm Correctness

Suppose all distances to vertices in S are correct

and u has smallest current value in V-S

d’(v)≤ d’(x)

x-v path length ≥ 0

∴distance value of vertex in V-S=length of shortest path from s

with only last edge leaving S

s

v

x
S Suppose some other

path to v and x= first vertex 

on this path not in S

∴ other path is longer

Therefore adding v to S keeps correct distances
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Dijkstra’s Algorithm

� Algorithm also produces a tree of 
shortest paths to v following pred links

� From w follow its ancestors in the tree 

back  to v

� If all you care about is the shortest path 
from v to w simply stop the algorithm 
when w is added to S
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Implementing Dijkstra’s Algorithm

� Need to 

� keep current distance values for nodes in 

V-S

� find minimum current distance value

� reduce distances when vertex moved to S
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Data Structure Review

� Priority Queue:
� Elements each with an associated key
� Operations

� Insert

� Find-min
� Return the element with the smallest key

� Delete-min
� Return the element with the smallest key and delete it from the data 

structure

� Decrease-key
� Decrease the key value of some element

� Implementations
� Arrays:   O(n) time find/delete-min,  O(1) time insert/ 

decrease-key

� Heaps:  O(log n) time insert/decrease-key/delete-min, O(1) time 
find-min
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Dijkstra’s Algorithm with Priority 
Queues

� For each vertex u not in tree maintain cost of 

current cheapest path through tree to u

� Store u in priority queue with key = length 

of this path

� Operations:  

� n-1 insertions (each vertex added once)

� n-1 delete-mins (each vertex deleted once)

� pick the vertex of smallest key, remove it from 

the priority queue and add its edge to the graph

� <m decrease-keys (each edge updates one 

vertex)
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Dijskstra’s Algorithm with Priority 
Queues

� Priority queue implementations
� Array

� insert O(1), delete-min O(n), decrease-key O(1)

� total O(n+n2+m)=O(n2)

� Heap

� insert, delete-min, decrease-key all O(log n)

� total O(m log n)

� d-Heap  (d=m/n)

� insert, decrease-key O(logm/n n)

� delete-min O((m/n) logm/n n)

� total O(m logm/n n)
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Minimum Spanning Trees (Forests)

� Given an undirected graph G=(V,E) with 
each edge e having a weight w(e)

� Find a subgraph T of G of minimum 
total weight s.t. every pair of vertices 
connected in G are also connected in T

� if G is connected then T is a tree otherwise 

it is a forest
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Weighted Undirected Graph
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Greedy Algorithm

� Prim’s Algorithm:

� start at a vertex s

� add the cheapest edge adjacent to s

� repeatedly add the cheapest edge that 

joins the vertices explored so far to the rest 

of the graph

� Exactly like Dijsktra’s Algorithm but with a 

different metric
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Dijsktra’s Algorithm

Dijkstra(G,w,s)

S←{s}

d[s]←0

while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one 
with the minimum value of d[u]+w(e)

S←S∪ {v}

d[v]←d[u]+w(e)

pred[v]←u

*For each v∉S maintain d’[v]=minimum value of 
d[u]+w(e) over all vertices u∈S s.t. e=(u,v) is in of G
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Prim’s Algorithm

Prim(G,w,s)

S←{s}

while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one 
with the minimum value of w(e)

S←S∪ {v}

pred[v]←u

*For each v∉S maintain small[v]=minimum value of w(e)
over all vertices u∈S s.t. e=(u,v) is in of G
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Second Greedy Algorithm

� Kruskal’s Algorithm

� Start with the vertices and no edges

� Repeatedly add the cheapest edge that 

joins two different components.  i.e. that 

doesn’t create a cycle
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Why greed is good

� Definition: Given a graph G=(V,E), a cut of 

G is a partition of V into two non-empty 

pieces,  S and V-S

� Lemma: For every cut (S,V-S) of G, there is 

a minimum spanning tree (or forest) 

containing any cheapest edge crossing the 

cut, i.e. connecting some node in S with 

some node in V-S. 

� call such an edge safe
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Cuts and Spanning Trees
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The greedy algorithms always 
choose safe edges

� Prim’s Algorithm

� Always chooses cheapest edge from 

current tree to rest of the graph

� This is cheapest edge across a cut which 

has the vertices of that tree on one side. 
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Prim’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

79

The greedy algorithms always 
choose safe edges

� Kruskal’s Algorithm

� Always chooses cheapest edge connecting 

two pieces of the graph that aren’t yet 

connected

� This is the cheapest edge across any cut 

which has those two pieces on different 

sides and doesn’t split any current pieces. 
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Proof of Lemma:
An Exchange Argument

Suppose you have an MST not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

83

Proof of Lemma

e
u

v

Endpoints of e, u and v must be connected in T

Suppose you have an MST  T not using cheapest edge e
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Proof of Lemma

Suppose you have an MST  T not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

h
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Proof of Lemma

Suppose you have an MST  T not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

w(e)≤w(h)

h
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Proof of Lemma

Replacing h by e does not increase weight of T

e
u

v

h

w(e)≤w(h)

All the same points are connected by the new tree
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Kruskal’s Algorithm 
Implementation & Analysis

� First sort the edges by weight O(m log m)

� Go through edges from smallest to largest

� if endpoints of edge e are currently in 

different components 

� then add to the graph

� else skip

� Union-find data structure handles last part

� Total cost of last part: O(m α(n)) where

α(n)<< log m

� Overall O(m log n)
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Union-find disjoint sets data 
structure

� Maintaining components

� start with n different components 

� one per vertex

� find components of the two endpoints of e

� 2m finds

� union two components when edge 

connecting them is added

� n-1 unions
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Prim’s Algorithm with Priority 
Queues

� For each vertex u not in tree maintain current 

cheapest edge from tree to u

� Store u in priority queue with key = weight 

of this edge

� Operations:  

� n-1 insertions (each vertex added once)

� n-1 delete-mins (each vertex deleted once)

� pick the vertex of smallest key, remove it from 

the p.q. and add its edge to the graph

� <m decrease-keys (each edge updates one 

vertex)
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Prim’s Algorithm with Priority 
Queues

� Priority queue implementations
� Array

� insert O(1), delete-min O(n), decrease-key O(1)

� total O(n+n2+m)=O(n2)

� Heap

� insert, delete-min, decrease-key all O(log n)

� total O(m log n)

� d-Heap  (d=m/n)

� insert, decrease-key O(logm/n n)

� delete-min O((m/n) logm/n n)

� total O(m logm/n n)
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Boruvka’s Algorithm (1927)

� A bit like Kruskal’s Algorithm
� Start with n components consisting of a 

single vertex each

� At each step, each component chooses its 
cheapest outgoing edge to add to the 
spanning forest

� Two components may choose to add the 
same edge

� Useful for parallel algorithms since 
components may be processed (almost) 
independently
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Many other minimum spanning tree 
algorithms, most of them greedy

� Cheriton & Tarjan 

� O(m loglog n) time using a queue of 

components

� Chazelle

� O(m α(m) log α(m)) time

� Incredibly hairy algorithm

� Karger, Klein & Tarjan

� O(m+n) time randomized algorithm that 

works most of the time
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Applications of Minimum Spanning 
Tree Algorithms

� Minimum cost network design:
� Build a network to connect all locations 

{v1,…,vn}

� Cost of connecting vi to vj is w(vi,vj)>0

� Choose a collection of links to create that 
will be as cheap as possible

� Any minimum cost solution is an MST

� If there is a solution containing a cycle 
then we can remove any edge and get a 
cheaper solution
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Applications of Minimum Spanning 
Tree Algorithms

� Maximum Spacing Clustering
� Given

� a collection U of n objects {p1,…,pn}

� Distance measure d(pi,pj) satisfying

� d(pi,pi)=0

� d(pi,pj)>0 for i≠j

� d(pi,pj)=d(pj,pi)

� Positive integer k≤n

� Find a k-clustering, i.e. partition of U into k clusters 
C1,…,Ck, such that the spacing between the 
clusters is as large possible where

spacing = min{d(pi,pj): pi and pj in different 
clusters}
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Greedy Algorithm

� Start with n clusters each consisting of a single point

� Repeatedly find the closest pair of points in different 
clusters under distance d and merge their clusters 
until only k clusters remain

� Gets the same components as Kruskal’s Algorithm 
does!
� The sequence of closest pairs is exactly the MST

� Alternatively we could run Kruskal’s algorithm once 
and for any k we could get the maximum spacing     
k-clustering by deleting the k-1 most expensive 
edges
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Proof that this works

� Removing the k-1 most expensive edges from an 
MST yields k components C1,…,Ck and the spacing 
for them is precisely the cost d* of the k-1st most 
expensive edge in the tree

� Consider any other k-clustering C’1,…,C’k
� Since they are different and cover the same set of points 

there is some pair of points pi,pj such that pi,pj are in some 
cluster Cr but pi, pj are in different clusters C’s and C’t

� Since pi,pj ∈∈∈∈Cr, pi and pj have a path between them 
all of whose edges have distance at most d*

� This path must cross between clusters in the C’
clustering so the spacing in C’ is at most d*
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Optimal Caching/Paging

� Memory systems 
� many levels of storage with different access times

� smaller storage has shorter access time

� to access an item it must be brought to the lowest 
level of the memory system

� Consider the management problem between 
adjacent levels
� Main memory with n data items from a set U

� Cache can hold k<<<<n items

� Simplest version with no direct-mapping or other 
restrictions about where items can be

� Suppose cache is full initially

� Holds k data items to start with
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Optimal Offline Caching

� Caching.
� Cache with capacity to store k items.

� Sequence of m item requests d1, d2, …, dm.

� Cache hit: item already in cache when requested.

� Cache miss: item not already in cache when requested:  
must bring requested item into cache, and evict some 
existing item, if full.

� Goal. Eviction schedule that minimizes number                           
of cache misses (actually, # of evictions).

� Example: k = 2, initial cache = ab,
requests:  a, b, c, b, c, a, a, b.

� Optimal eviction schedule:  2 cache misses.

a b

a b

c b

c b

c b

a b

a

b

c

b

c

a

a ba

a bb

cacherequests
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Optimal Offline Caching:  Farthest-In-
Future

� Farthest-in-future. Evict item in the cache that is not 
requested until farthest in the future.

� Theorem. [Bellady, 1960s] FIF is an optimal eviction 
schedule.

� Proof. Algorithm and theorem are intuitive; proof is 
subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ... 

current cache: c d e f

future queries:

cache miss eject this one
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Other Algorithms

� Often there is flexibility, e.g.

� k=3, C={a,b,c} 

� D=      a b c d a d e a d b c

� SFIF=          c       b       e d

� S    =           b       c       d e

� Why aren’t other algorithms better?

� Least-Frequenty-Used-In-Future?

� Exchange Argument

� We can swap choices to convert other schedules 

to Farthest-In-Future without losing quality
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Reduced Eviction Schedules

� Definition.  A reduced schedule is a schedule that only inserts an item 

into the cache in a step in which that item is requested.

� Intuition. Can transform an unreduced schedule into a reduced one 

with no more cache misses.

a x

an unreduced schedule

c

a d c

a d b

a c b

a x b

a c b

a b c

a b c

a

c

d

a

b

c

a

a

a b

a reduced schedule

c

a b c

a d c

a d c

a d b

a c b

a c b

a c b

a

c

d

a

b

c

a

a

a b ca a b ca
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Reduced Eviction Schedules

� Claim. Given any unreduced schedule S, can transform it into a 

reduced schedule S' with no more cache misses.

� Proof. (by induction on number of unreduced items)

� Suppose S brings d into the cache at time t, without a request.

� Let c be the item S evicts when it brings d into the cache.

� Case 1:  d evicted at time t', before next request for d.

� Case 2:  d requested at time t' before d is evicted.  ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d  evicted at time t',
before next request

e

Case 1 Case 2
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Farthest-In-Future:  Analysis

� Theorem. FIF is optimal eviction algorithm.

� Proof. (by induction on number or requests j)

� Let S be reduced schedule that satisfies invariant through j requests. 

We produce S' that satisfies invariant after j+1 requests.

� Consider (j+1)st request d = dj+1.

� Since S and SFIF have agreed up until now, they have the same cache 

contents before request j+1.

� Case 1: (d is already in the cache).  S' = S satisfies invariant.

� Case 2: (d is not in the cache and S and SFIF evict the same element).

S' = S satisfies invariant.

Invariant: There exists an optimal reduced schedule S that makes 
the same eviction schedule as SFIF through the first j+1 requests.
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Farthest-In-Future:  Analysis

� Proof. (continued)

� Case 3:  (d is not in the cache; SFIF evicts e; S evicts f ≠≠≠≠ e).

� begin construction of S' from S by evicting e instead of f

� now S' agrees with SFIF on first j+1 requests; we show that 

having element f in cache is no worse than having element e

� Continue building S’ to be the same as S until forced to be 

different

j same f same fee

S S'

j same d same fde

S S'

j+1

evicted by SFIF
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Farthest-In-Future:  Analysis

� Let j' be the first time after j+1 that S and S' must take a different 

action, and let g be item requested at time j'.

� Case 3a:  g = e. Can't happen: e was evicted by Farthest-In-Future so 

there must be a request for f before e.

� Case 3b:  g = f.  Element f can't be in cache of S, so let e' be the element 

that S evicts.

� if e' = e, S' accesses f from cache; now S and S' have same cache

� if e' ≠≠≠≠ e, S' evicts e' and brings e into the cache; now S and S' have the 

same cache

Note:  S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFIF through step j+1

same e same f

S S'

j'

must involve e or f (or both)
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Farthest-In-Future:  Analysis

� Let j' be the first time after j+1 that S and S' must take a different 

action, and let g be item requested at time j'.

� Case 3c:  g ≠≠≠≠ e, f.  S must evict e.

Make S' evict f; now S and S' have the same cache.  ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)

In each case can now extend S’ using rest of S at no extra cost.

S’ is optimal, reduced, and agrees with SFIF for j+1 steps

Optimality of SFIF follows by induction.
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Caching Perspective

� Online vs. offline algorithms.
� Offline:  full sequence of requests is known a priori.

� Online (reality):  requests are not known in advance.

� Caching is among most fundamental online problems in CS.

� LIFO.  Evict page brought in most recently.
� LRU.  Evict page whose most recent access was earliest.

� Theorem.  FIF is optimal offline eviction algorithm.
� Provides basis for understanding and analyzing online algorithms.

� LRU is k-competitive.  [Section 13.8]

� LIFO is arbitrarily bad.

FIF with direction of time reversed!


