

Network Flow

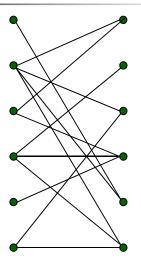
Paul Beame

Bipartite Matching

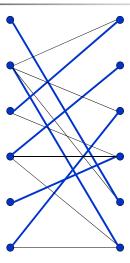
- Given: A bipartite graph G=(V,E)
 - M⊆E is a matching in G iff no two edges in M share a vertex
- Goal: Find a matching M in G of maximum possible size

2

Bipartite Matching



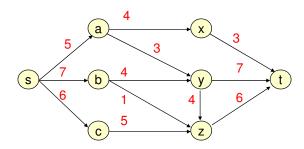
Bipartite Matching



3

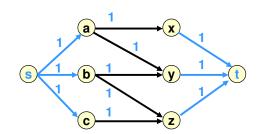
1

The Network Flow Problem



How much stuff can flow from s to t?

Bipartite matching as a special case of flow



Net Flow: Formal Definition

Given:

A digraph **G** = (**V**,**E**)

Two vertices **s**,**t** in **V**(source & sink)

A capacity $c(u,v) \ge 0$ for each $(u,v) \in E$ (and c(u,v) = 0 for all non-edges (u,v))

Find:

A *flow function* $f: E \rightarrow R$ s.t., for all u,v:

$$\bullet \ 0 \le f(u,v) \le c(u,v)$$

[Capacity Constraint]

5

• if
$$\mathbf{u} \neq \mathbf{s}, \mathbf{t}$$
, i.e. $f^{\text{out}}(\mathbf{u}) = f^{\text{in}}(\mathbf{u})$

[Flow Conservation]

Maximizing total flow $v(\mathbf{f}) = \mathbf{f}^{out}(\mathbf{s})$

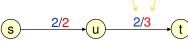
Notation:

$$f^{in}(v) = \sum\nolimits_{e=(u,v) \in E} f(u,v) \qquad \qquad f^{out}(v) = \sum\nolimits_{e=(v,w) \in E} f(v,w)$$

4

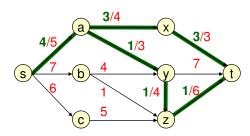
Example: A Flow Function

flow/capacity, not .66...



$$f^{in}(u) = f(s,u) = 2 = f(u,t) = f^{out}(u)$$

Example: A Flow Function



Not shown: f(u,v) if = 0

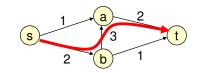
Note: max flow ≥ 4 since

f is a flow function, with v(f) = 4

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G Pick such a path, p Find c, the min capacity of any edge in p Subtract c from all capacities on p Delete edges of capacity 0

This does NOT always find a max flow:



If pick $s \rightarrow b \rightarrow a \rightarrow t$ first, flow stuck at 2. But flow 3 possible.

9

10

A Brief History of Flow

#	year	discoverer(s)	bound
1	1951	Dantzig	$O(n^2mU)$
2	1955	Ford & Fulkerson	O(nmU)
3	1970	Dinitz	$O(nm^2)$
		Edmonds & Karp	
4	1970	Dinitz	$O(n^2m)$
5	1972	Edmonds & Karp	$O(m^2 \log U)$
		Dinitz	
6	1973	Dinitz	$O(nm \log U)$
		Gabow	
7	1974	Karzanov	$O(n^3)$
8	1977	Cherkassky	$O(n^2\sqrt{m})$
9	1980	Galil & Naamad	$O(nm \log^2 n)$
10	1983	Sleator & Tarjan	$O(nm \log n)$
11	1986	Goldberg & Tarjan	$O(nm \log(n^2/m))$
12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
13	1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/(m+2))$
14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
15	1990	Cheriyan et al.	$O(n^3/\log n)$
16	1990	Alon	$O(nm + n^{8/3} \log n)$
17	1992	King et al.	$O(nm + n^{2+\epsilon})$
18	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
19	1994	King et al.	$O(nm \log_{m/(n \log n)} n)$
20	1997	Goldberg & Rao	$O(m^{3/2} \log(n^2/m) \log U)$
			$O(n^{2/3}m\log(n^2/m)\log U)$

n = # of vertices m= # of edges U = Max capacity

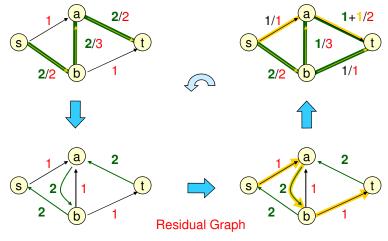
Source: Goldberg & Rao,

2012 Orlin + King et al.

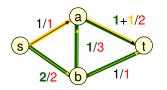
FOCS '97

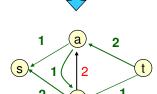
11

Greed Revisited: Residual Graph & Augmenting Path



Greed Revisited: An Augmenting Path

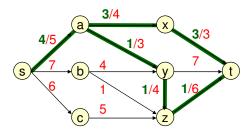




New Residual Graph

Residual Capacity

■ The residual capacity (w.r.t. f) of (\mathbf{u}, \mathbf{v}) is $\mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) = \mathbf{c}(\mathbf{u}, \mathbf{v}) - \mathbf{f}(\mathbf{u}, \mathbf{v})$ if $\mathbf{f}(\mathbf{u}, \mathbf{v}) \leq \mathbf{c}(\mathbf{u}, \mathbf{v})$ and $\mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) = \mathbf{f}(\mathbf{v}, \mathbf{u})$ if $\mathbf{f}(\mathbf{v}, \mathbf{u}) > 0$



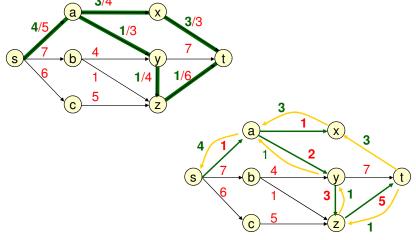
• e.g. $c_f(s,b)=7$; $c_f(a,x)=1$; $c_f(x,a)=3$

14

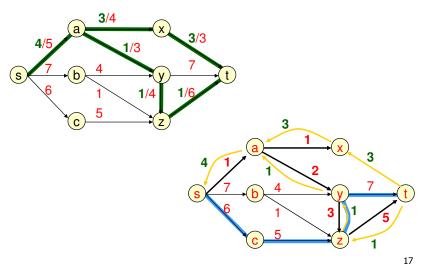
Residual Graph & Augmenting Paths

- The *residual graph* (w.r.t. **f**) is the graph $G_f = (V, E_f)$, where $E_f = \{ (u,v) \mid c_f(u,v) > 0 \}$
 - Two kinds of edges
 - Forward edges
 - f(u,v) < c(u,v) so $c_f(u,v) = c(u,v) f(u,v) > 0$
 - Backward edges
 - f(u,v)>0 so $c_f(v,u) \ge -f(v,u)=f(u,v)>0$
- An augmenting path (w.r.t. f) is a simple
 s → t path in G_f.

A Residual Network



An Augmenting Path



4

Augmenting A Flow

```
\begin{aligned} &\text{augment}(\textbf{f},\textbf{P}) \\ &\textbf{c}_{\textbf{P}} \leftarrow \text{min}_{(\textbf{u},\textbf{v}) \in \textbf{P}} \textbf{c}_{\textbf{f}}(\textbf{u},\textbf{v}) & \text{"bottleneck}(\textbf{P})" \\ &\text{for each } \textbf{e} \in \textbf{P} \\ &\text{if } \textbf{e} \text{ is a forward edge then} \\ &\text{increase } \textbf{f}(\textbf{e}) \text{ by } \textbf{c}_{\textbf{P}} \\ &\text{else } (\textbf{e} \text{ is a backward edge}) \\ &\text{decrease } \textbf{f}(\textbf{e}) \text{ by } \textbf{c}_{\textbf{P}} \\ &\text{endif} \\ &\text{endfor} \\ &\text{return}(\textbf{f}) \end{aligned}
```

18



Claim 7.1

If **G**_f has an augmenting path **P**, then the function **f**'=augment(**f**,**P**) is a legal flow.

Proof:

 f' and f differ only on the edges of P so only need to consider such edges (u,v)

Proof of Claim 7.1

- If (u,v) is a forward edge then $f'(u,v)=f(u,v)+c_p \le f(u,v)+c_f(u,v)$ = f(u,v)+c(u,v)-f(u,v) = c(u,v)
- If (u,v) is a backward edge then f and f' differ on flow along (v,u) instead of (u,v) f'(v,u)=f(v,u)-c_p ≥ f(v,u)-c_f(u,v) = f(v,u)-f(v,u)=0
- Other conditions like flow conservation still met

Ford-Fulkerson Method

Start with f=0 for every edge
While G_f has an augmenting path,
augment

• Questions:

- Does it halt?
- Does it find a maximum flow?
- How fast?

21

22

Observations about Ford-Fulkerson Algorithm

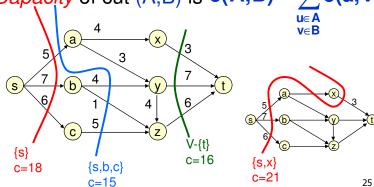
- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value v(f')=v(f)+c_P>v(f) for f'=augment(f,P)
 - Since edges of residual capacity 0 do not appear in the residual graph
- Let $C = \sum_{(s,u) \in E} c(s,u)$
 - v(f)≤C
 - F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step

Running Time of Ford-Fulkerson

- For f=0, G_f=G
- Finding an augmenting path in G_f is graph search O(n+m)=O(m) time
- Augmenting and updating G_f is O(n) time
- Total O(mC) time
- Does is find a maximum flow?
 - Need to show that for every flow f that isn't maximum G_f contains an s-t-path

Cuts

- A partition (A,B) of V is an s-t-cut if
 - **s**∈ **A**. **t**∈ **B**
- Capacity of cut (A,B) is $c(A,B) = \sum c(u,v)$



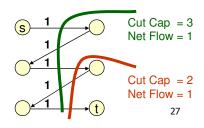
Convenient Definition

•
$$f^{out}(A) = \sum_{v \in A, w \notin A} f(v, w)$$

•
$$f^{in}(A) = \sum_{v \in A, u \notin A} f(u,v)$$

Claims 7.6 and 7.8

- For any flow f and any cut (A,B),
 - the net flow across the cut equals the total flow, i.e., $v(f) = f^{out}(A) - f^{in}(A)$, and
 - the net flow across the cut cannot exceed the capacity of the cut, i.e. $f^{out}(A)-f^{in}(A) \leq c(A,B)$
- Corollary : Max flow ≤ Min cut



Proof of Claim 7.6

- Consider a set A with s∈ A, t∉ A
- We can add flow values for edges with both endpoints in A to both sums and they would cancel out so

$$\begin{split} \bullet \quad f^{out}(\textbf{A})\text{-}f^{in}(\textbf{A}) &= \sum_{\textbf{v} \in \textbf{A}, \ \textbf{w} \in \textbf{V}} f\left(\textbf{v}, \textbf{w}\right)\text{-}\sum_{\textbf{v} \in \textbf{A}, \ \textbf{u} \in \textbf{V}} f\left(\textbf{u}, \textbf{v}\right) \\ &= \sum_{\textbf{v} \in \textbf{A}} \left(\sum_{\textbf{w} \in \textbf{V}} f\left(\textbf{v}, \textbf{w}\right) - \sum_{\textbf{u} \in \textbf{V}} f\left(\textbf{u}, \textbf{v}\right)\right) \\ &= \sum_{\textbf{v} \in \textbf{A}} f^{out}\left(\textbf{v}\right) - f^{in}(\textbf{v}) \\ &= f^{out}(\textbf{s})\text{-}f^{in}(\textbf{s}) \end{split}$$

since all other vertices have $f^{out}(\mathbf{v}) = f^{in}(\mathbf{v})$

 $\mathbf{v}(\mathbf{f}) = \mathbf{f}^{\text{out}}(\mathbf{s}) \text{ and } \mathbf{f}^{\text{in}}(\mathbf{s}) = 0$

26

Proof of Claim 7.8

$$\begin{split} \bullet & \nu(f) = f^{out}(A) - f^{in}(A) \\ & \leq f^{out}(A) \\ & = \sum_{v \in A, \ w \notin A} f(v, w) \\ & \leq \sum_{v \in A, \ w \notin A} c(v, w) \\ & \leq \sum_{v \in A, \ w \in B} c(v, w) \\ & = c(A, B) \end{split}$$

Max Flow / Min Cut Theorem

Claim 7.9 For any flow f, if G_f has no augmenting path then there is some s-t-cut (A,B) such that v(f)=c(A,B) (proof on next slide)

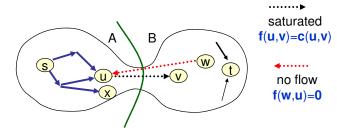
- We know by Claims 7.6 & 7.8 that any flow f' satisfies v(f') ≤ c(A,B) and we know that F-F runs for finite time until it finds a flow f satisfying conditions of Claim 7.9
 - Therefore by 7.9 for any flow f', $v(f') \le v(f)$
- Corollary (1) F-F computes a maximum flow in G
 (2) For any graph G, the value v(f) of a maximum flow = minimum capacity c(A,B) of any s-t-cut in G

29

30

Claim 7.9

Let $A = \{ u \mid \exists \text{ an path in } G_f \text{ from s to } u \}$ $B = V - A; s \in A, t \in B$



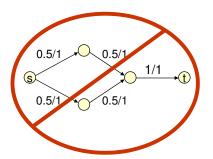
This is true for **every** edge crossing the cut, i.e.

$$f^{out}(\textbf{A}) = \sum_{\substack{u \in \textbf{A} \\ v \in \textbf{B}}} f(u,v) = \sum_{\substack{u \in \textbf{A} \\ v \in \textbf{B}}} c(u,v) = c(\textbf{A},\textbf{B}) \text{ and } f^{in}(\textbf{A}) = \textbf{0} \text{ so } \\ \nu(f) = f^{out}(\textbf{A}) - f^{in}(\textbf{A}) = c(\textbf{A},\textbf{B})$$

Flow Integrality Theorem

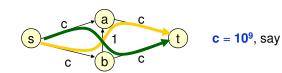
If all capacities are integers

- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)



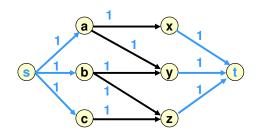
Corollaries & Facts

- If Ford-Fulkerson terminates, then it's found a max flow.
- It will terminate if c(e) integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:



33

Bipartite matching as a special case of flow



Integer flows implies each flow is just a subset of the edges

Therefore flow corresponds to a matching

O(mC)=O(nm) running time

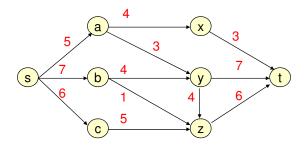
34

4

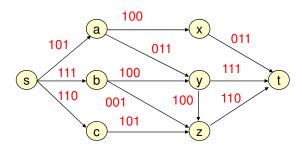
Capacity-scaling algorithm

- General idea:
 - Choose augmenting paths P with 'large' capacity Cp
 - Can augment flows along a path P by any amount ∆ ≤c_P
 - Ford-Fulkerson still works
 - Get a flow that is maximum for the highorder bits first and then add more bits later

Capacity Scaling

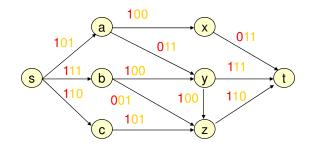


Capacity Scaling



4

Capacity Scaling Bit 1



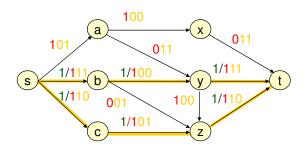
Capacity on each edge is at most 1 (either 0 or 1 times $\Delta=4$)

37

38

4

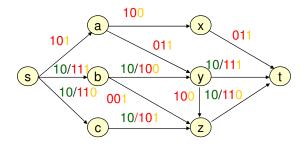
Capacity Scaling Bit 1



O(nm) time

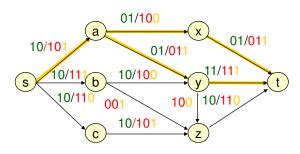
4

Capacity Scaling Bit 2



Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=2$)

Capacity Scaling Bit 2

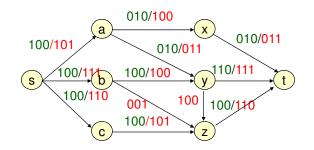


Residual capacity across min cut is at most m

 $\Rightarrow \leq m$ augmentations

4

Capacity Scaling Bit 3



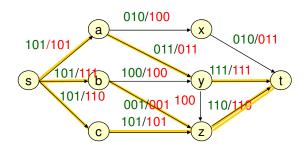
Residual capacity across min cut is at most m (either 0 or 1 times $\Delta=1$)

41

42

4

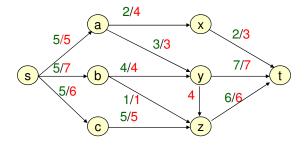
Capacity Scaling Bit 3



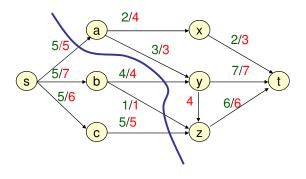
After ≤ m augmentations

4

Capacity Scaling Final



Capacity Scaling Min Cut



Total time for capacity scaling

- log₂ U rounds where U is largest capacity
- At most m augmentations per round
 - Let c_i be the capacities used in the ith round and f_i be the maxflow found in the ith round
 - For any edge (\mathbf{u},\mathbf{v}) , $\mathbf{c}_{i+1}(\mathbf{u},\mathbf{v}) \leq 2\mathbf{c}_{i}(\mathbf{u},\mathbf{v})+1$
 - i+1st round starts with flow f = 2 f_i
 - Let (A,B) be a min cut from the ith round
 - $\mathbf{v}(\mathbf{f_i}) = \mathbf{c_i}(\mathbf{A}, \mathbf{B})$ so $\mathbf{v}(\mathbf{f}) = \mathbf{2c_i}(\mathbf{A}, \mathbf{B})$
 - $\qquad \qquad \nu(f_{i+1}) \leq c_{i+1}(A,B) \leq 2c_i(A,B) + m = \nu(f) + m$
- O(m) time per augmentation
- Total time O(m² log U)

45

46

Edmonds-Karp Algorithm

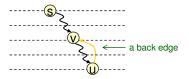
- Use a shortest augmenting path (via Breadth First Search in residual graph)
- Time: O(n m²)

BFS/Shortest Path Lemmas

Distance from s in G_f is never reduced by:

- Deleting an edge
 Proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u

Proof: BFS is unchanged, since **v** visited before **(u,v)** examined



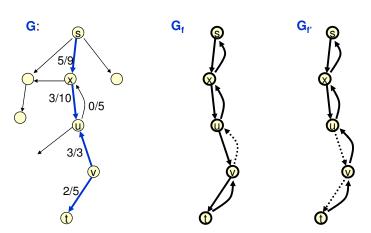
Key Lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P

4

Augmentation vs BFS



9

Theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:

Call (u,v) critical for augmenting path P if it's closest to s having min residual capacity

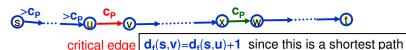
It will disappear from G_f after augmenting along P

In order for (u,v) to be critical again the (u,v) edge must re-appear in G_f but that will only happen when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from s so each edge critical at most n/2 times

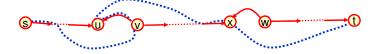
Critical Edges in G_f

Shortest s-t path P in G_f



After augmenting along P

For (\mathbf{u}, \mathbf{v}) to be critical later for some flow \mathbf{f} ' it must be in $\mathbf{G}_{\mathbf{f}}$ so must have augmented along a shortest path containing (\mathbf{v}, \mathbf{u})



Then we must have $d_f(s,u)=d_f(s,v)+1 \ge d_f(s,v)+1=d_f(s,u)+2$

■ Edmonds-Karp runs in O(nm²) time

Project Selection a.k.a. The Strip Mining Problem

Given

- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its **predecessors**)
- a profit value **p(v)** associated with each task $\mathbf{v} \in \mathbf{V}$ (may be positive or negative)

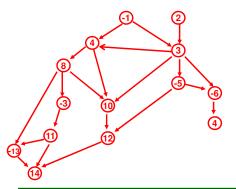
Find

■ a set A⊆V of tasks that is closed under predecessors, i.e. if $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ and $\mathbf{u} \in \mathbf{A}$ then $v \in A$, that maximizes Profit(A)= $\sum_{v \in A} p(v)$

53

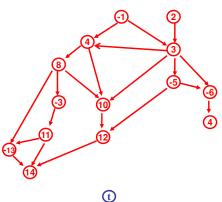
54

Project Selection Graph

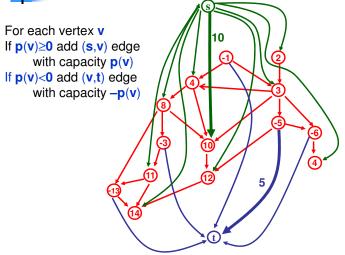


Each task points to its predecessor tasks

Extended Graph



Extended Graph G'



4

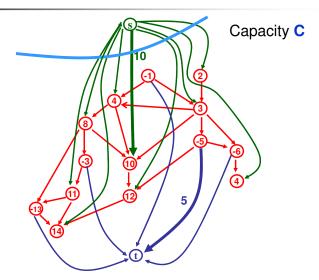
Extended Graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - satisfies precedence constraints
 - has maximum possible profit in G
- Cut capacity with $S=\{s\}$ is just $C=\sum_{v: p(v)\geq 0} p(v)$
 - Profit(A) ≤ C for any set A
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
 - That would correspond to a task in A=S-{s} that had a predecessor not in A=S-{s}
- Set capacity of each of the edges of G to C+1
 - The minimum cut has size at most C

57

58

Extended Graph G'



Extended Graph G'



Project Selection

Claim Any s-t-cut (S,T) in G' such that
 A=S-{s} satisfies precedence constraints has capacity

$$c(S,T)=C - \sum_{v \in A} p(v) = C - Profit(A)$$

- Corollary A minimum cut (S,T) in G' yields an optimal solution A=S-{s} to the profit selection problem
- Algorithm Compute maximum flow f in G', find the set S of nodes reachable from s in G', and return S-{s}

Proof of Claim

- A=S-{s} satisfies precedence constraints
 - No edge of G crosses forward out of A since those edges have capacity C+1
 - Only forward edges cut are of the form (v,t) for v∈ A or (s,v) for v∉ A
 - The (v,t) edges for $v \in A$ contribute

$$\sum_{\mathbf{v} \in \mathbf{A}: \mathbf{p}(\mathbf{v}) < \mathbf{0}} - \mathbf{p}(\mathbf{v}) = -\sum_{\mathbf{v} \in \mathbf{A}: \mathbf{p}(\mathbf{v}) < \mathbf{0}} \mathbf{p}(\mathbf{v})$$

■ The (s,v) edges for v∉ A contribute

$$\sum_{\mathbf{v} \notin A: \ p(\mathbf{v}) \geq 0} \mathbf{p}(\mathbf{v}) = \mathbf{C} - \sum_{\mathbf{v} \in A: \ p(\mathbf{v}) \geq 0} \mathbf{p}(\mathbf{v})$$

Therefore the total capacity of the cut is

$$c(S,T) = C - \sum_{v \in A} p(v) = C - Profit(A)$$