CSE 421: Introduction to
ﬁAlgorithms

Dynamic Programming

Paul Beame

i Dynamic Programming

= Dynamic Programming

= Give a solution of a problem using smaller
sub-problems where the parameters of all
the possible sub-problems are determined
in advance

= Useful when the same sub-problems show
up again and again in the solution

A simple case:
i Computing Fibonacci Numbers

= Recall F =F,,+F,, and Fy=0, F,=1

= Recursive algorithm:
= Fibo(n)
if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

i Call tree - start

/ \
F (5) F (4)
/
F4) F (3)
— N\
F(3) F(2)
VRN
F2) FQ@)

i Full call tree

i Memoization (Caching)

= Remember all values from previous

F (6) :
T~ recursive calls
F (5) F (4)
F @) ~ \F(s) FI(S)\F(Z) = Before recursive call, test to see if value
has already been computed
/ AN / N\ F(IZ)\F(1) /\
F (3) FQ) F@ F() LF() F(O . :
SN N SN F(1/) \F(O)1 - FO = Dynamic Programming
F@ P o FO) Fo) | ! 0 = Convert memoized algorithm from a
| (ool I 1 0 recursive one 10 an iterative one
; ' t iterati
F() F@ 1 o0 | 0
| |
1 0
5
Fibonacci Fibonacci: Space-Saving Dynamic

i Dynamic Programming Version

= FiboDP(n):
F[0]< O
F[1] <1
fori=2 ton do
Fli]«F[i-1]+F[i-2]
endfor
return(F[n])

i Programming

= FiboDP(n):

prev— 0

curr<1

fori=2 to n do
temp<«curr
curr«<curr+prev
prev«—temp

endfor

return(curr)

i Dynamic Programming

= Useful when

= Same recursive sub-problems occur
repeatedly

= Can anticipate the parameters of these
recursive calls

= The solution to whole problem can be
figured out with knowing the internal details
of how the sub-problems are solved
= principle of optimality

“Optimal solutions to the sub-problems suffice for
optimal solution to the whole problem”

Three Steps to

i Dynamic Programming

= Formulate the answer as a recurrence
relation or recursive algorithm

= Show that the number of different values of
parameters in the recursive calls is “small”
= e.9., bounded by a low-degree polynomial
= Can use memoization

= Specify an order of evaluation for the
recurrence so that you already have the
partial results ready when you need them.

10

i Weighted Interval Scheduling

= Same problem as interval scheduling
except that each request i also has an
associated value or weight w;,
= W; might be
= amount of money we get from renting
out the resource for that time period
= amount of time the resource is being
used w;=f;-s;
= Goal: Find compatible subset S of
requests with maximum total weight

11

Greedy Algorithms for Weighted

i Interval Scheduling?

= No criterion seems to work
= Earliest start time s;
= Doesn’t work —_— —_

= Shortest request time f;-s;
= Doesn’t work

= Fewest conflicts
= Doesn’t work I —_—

= Earliest finish fime f;
= Doesn’t work

= Largest weight w;
= Doesn’t work

12

Towards Dynamic Programming:
i Step 1 — A Recursive Algorithm

= Suppose that like ordinary interval scheduling
we have first sorted the requests by finish
time f; so f, <f, <...<f,

= Say request i comes before request j if i<

= For any request j let p(j) be

= the largest-numbered request before j that is
compatible with j

= or 0 if no such request exists

= Therefore {1,...,p(j)} is precisely the set of
requests before j that are compatible with

13

Towards Dynamic Programming:
i Step 1 — A Recursive Algorithm

= Two cases depending on whether an
optimal solution O includes request n

= If it does include request n then all other
requests in O must be contained in
{1,...,p(n)}
= Not only that!

= Any set of requests in {1,...,p(n)} will be
compatible with request n

= So in this case the optimal solution O must
contain an optimal solution for {1,...,p(n)}

= “Principle of Optimality”

14

Towards Dynamic Programming:
i Step 1 — A Recursive Algorithm

= Two cases depending on whether an
optimal solution O includes request n
= If it does not include request n then all
requests in O must be contained in
{1,..., n-1}
= Not only that!

= The optimal solution O must contain an
optimal solution for {1,..., n-1}

= “Principle of Optimality”

15

Towards Dynamic Programming:
i Step 1 — A Recursive Algorithm

= All subproblems involve requests {1,..,i} for
some i

= Fori=1,...,n let OPT(i) be the weight of the
optimal solution to the problem {1,....i}

= The two cases give
OPT(n)=max[w,+OPT(p(n)),OPT(n-1)]

= Also
« ne O iff w,_+OPT(p(n))>OPT(n-1)

16

Towards Dynamic Programming:
i Step 1 — A Recursive Algorithm

= Sort requests and compute array pJi] for
eachi=1,...,n

ComputeOpt(n)

if n=0 then return(0)

else
u«—ComputeOpt(p[n])
v«—ComputeOpt(n-1)
if w,+u>Vv then return(w,+u)

else return(v)
endif

17

Towards Dynamic Programming:
i Step 2 — Small # of parameters

= ComputeOpt(n) can take exponential time in
the worst case

= 2" calls if p(i)=i-1 for every |

= There are only n possible parameters to
ComputeOpt

= Store these answers in an array OPT[n] and
only recompute when necessary

= Memoization

= Initialize OPT[i]=0 for i=1,...,n

18

Dynamic Programming:
i Step 2 — Memoization

ComputeOpt(n)

. MComputeOpt(n)
if n=0 then return(0) if OPT[n]=0 then
else v«ComputeOpt(n)
u«—MComputeOpt(p[n]) OPT[n]«v
v—MComputeOpt(n-1) return(v)
if w,+u>v then else
return(w,+u) return(OPT[n])
else return(v) endif
endif

19

Dynamic Programming Step 3:
i Iterative Solution

= The recursive calls for parameter n have parameter
values i that are <n

IterativeComputeOpt(n)
array OPT[0..n]
OPT[0]«<0
fori=1ton
if w;+OPT][pli]] >OPTI[i-1] then
OPTI[i] «w;+OPT[p]i]]
else
OPT]i] «OPTJi-1]
endif
endfor

20

i Producing the Solution i Example
1 2 3 4 5 6 7 8 9
IterativeComputeOptSolution(n) .
array OPTI[0..n], Used[1..n] “] 4 2 6 8 11 (15 |11 |12 |18
OPTI[0]«<-0 in !
for I=1 to n S<h_'|®' g i 7 9 10 (13 (14 (17 |18 |19 |20
if w;+OPT][pli]] >OPT[i-1] then while I>0 do ,
OPT[i] —w,+OPT[p[il] ' Usedli= then w3 17 14 5 8 |2 |7 7 2
Used[i]—1 ol {i} pli
else cise OPTI[i]
OPT][i] « OPTIi-1] i i- .
Used]i] <0 it Used[i]
endif endwhile
endfor
-------- 21 22
i Example i Example
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
4 2 6 8 11 |15 |11 |12 |18 4 2 6 8 11 |15 (11 |12 |18
Si S,
i 7 9 10 (13 (14 (17 |18 |19 |20 i 7 9 10 (13 (14 (17 |18 |19 |20
w, |3 7 4) 3 2 7 7 2 w, |3 7 4 5 3 2 7 7 2
plil [0 0 0 1 3 5 3 3 7 il |0 0 0 1 3 5 3 3 7
OPTI] OPTI] |3 7 7/ 8 10 [12 |14 |14 |16
Used(] Used[i] |1 1 0 1 1 1 1 0 1

23

24

i Example

1 2 3 4 5 6 7 8 9

4 (2 [6 [8 [11 [15 [11 [12 [18
V7 9 [10 [13 |14 [17 [18 |19 |20
w3 |7 4 [5 [3 2 J7 7]e
en [0 [0 Jo [+ [3 [5 [3 [3 [7
orti(3 [7 17 [8 [10 [12 |14 [14 [16
Used[i] | 1 1 0 1 1 1 1 0 1

5={9,7,2)

25

i Segmented Least Squares

= Least Squares
= Given a set P of n points in the plane
p1=(x1=y1)1---1pn=(xn=yn) with Xy<...< Xp
determine a line L given by y=ax+b that
optimizes the totaled ‘squared error’
= Error(L,P)=X,(y;-ax;-b)2
= A classic problem in statistics
= Optimal solution is known (see text)
= Call this line(P) and its error error(P)

26

i Least Squares

27

i Segmented Least Squares

= What if data seems to follow a
piece-wise linear model?

28

i Segmented Least Squares

29

i Segmented Least Squares

30

i Segmented Least Squares

= What if data seems to follow a piece-wise
linear model?
= Number of pieces to choose is not obvious
= If we chose n-1 pieces we could fit with 0
error
= Not fair
= Add a penalty of C times the number of
pieces to the error to get a total penalty

= How do we compute a solution with the
smallest possible total penalty?

31

i Segmented Least Squares

= Recursive idea

= If we knew the point p; where the last line
segment began then we could solve the
problem optimally for points py,...,p; and
combine that with the last segment to get a
global optimal solution

= Let OPT(i) be the optimal penalty for
points {py,...,P;}
= Total penalty for this solution would be
Error({p;,....Pa}) + C + OPT(j-1)

32

i Segmented Least Squares

33

i Segmented Least Squares

= Recursive idea
= We don’t know which point is p;
= But we do know that 1<j<n

= The optimal choice will simply be the
best among these possibilities

= [herefore

OPT(n)=min 1, {Error({p;,....pa}) + C +
OPT(j-1)}

34

i Dynamic Programming Solution

SegmentedLeastSquares(n) FindSegments
array OPT[0..n], Begin[1..n] ien
OPT[0]<0 S @
fori=1ton while i> 1 do
OPT[i]«-Error{(p;;...,p;)}+C compute Line({Pgegingy - --Pi})
Beg'"[']‘__1 output (Pgegingi:Pi). Line
for j=2to i-1 . i—Begin(i]
e—Error{(p;,....p)}+C+OPT[-1] 4 hiie
if @ <OPT[i] then
OPT[i] «e
Beginlil«j
endif
endfor
endfor

return(OPT[n])

35

i Knapsack (Subset-Sum) Problem

= Given:

= integer W (knapsack size)

= h object sizes X4, X, ..., X,
= Find:

= Subset S of {1,..., n} such that >.x,<W
but > x is as large as possible ™

icS

36

i Recursive Algorithm

= Let K(n,W) denote the problem to solve
for W and x4, X,, ... , X,
= For n>0,

= The optimal solution for K(n,W) is the better
of the optimal solution for either

K(n-1,W) or x,+K(n-1,W-x,,)
= For n=0

= K(0,W) has a trivial solution of an empty
set S with weight 0

37

i Recursive calls

= Recursivecallsonlist....3,4, 7

38

i Common Sub-problems

= Only sub-problems are K(i,w) for
« i =01,.., n
= W=0,1,.., w
= Dynamic programming solution
= Table entry for each K(i,w)
= OPT - value of optimal soln for first i
objects and weight w
= belong flag - is x; a part of this solution?
= Initialize OPT[0,w] for w=0,..., W
= Compute all OPT][i,*] from OPT[i-1,”] for i>0

39

i Dynamic Knapsack Algorithm

for w=0to W; OPT[0,w] < 0; end for
fori=1to n do
for w=0to W do
OPTIJi,w]<OPT][i-1,w]
belong[i,w]<0
if w2x;then
val «x;+OPT[i,w-x;]
if val>OPT][i,w] then
OPTJi,w]<val
belong[i,w]«1

Time O(nW)

end for
end for
return(OPT[n,W])

40

Sample execution on 2, 3, 4, 7 with

i K=15

41

i Saving Space

= To compute the value OPT of the
solution only need to keep the last two
rows of OPT at each step

= What about determining the set S?
= Follow the belong flags O(n) time
= What about space?

42

Three Steps to
i Dynamic Programming

= Formulate the answer as a recurrence
relation or recursive algorithm

= Show that the number of different values of
parameters in the recursive algorithm is
“small”
= e.g., bounded by a low-degree polynomial

= Specify an order of evaluation for the

recurrence so that you already have the
partial results ready when you need them.

43

RNA Secondary Structure:
i Dynamic Programming on Intervals

= RNA: sequence of bases

= String over alphabet {A, C, G, U}
U-G-U-A-C-C-G-G-U-A-G-U-A-C-A

= RNA folds and sticks to itself like a zipper
= AbondstoU
= Cbonds to G
= Bends can’t be sharp
= No twisting or criss-crossing

= How the bonds line up is called the RNA
secondary structure

44

i RNA Secondary Structure

U G
G A
U C
CI1G
C A U A C A
A A C C
G ‘IJC G
U ~ C
U A G U G G
C A cr|c A G
AU

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

45

Another view of

i RNA Secondary Structure

U
G A
U Cc

No crossb

ZAR

A---Cr--A---U-r-Co-U---Gor-Ur--Gr--Ar--Cre- G A-e-U---Gin-U---A

>0 > CO
>PCoc >»o

46

i RNA Secondary Structure

= Input: String x,...x,€{A,C,G,U}"
= Output: Maximum size set S of pairs (i,j)
such that
= {X;,X}={A,U} or {x;,x;} ={C,G}
= The pairs in S form a matching
= i<j-4 (no sharp bends)
= No crossing pairs

= If (i,j) and (k,I) are in S then it is not the
case that they cross as in i<k<j<I

47

i Recursion Solution

= Try all possible matches for the last
base

OPT(1..k-1) OPT(k+1..j-1)
OPT(1..))=MAX(OPT(1..j]-1),1+MAX;_;_;.5 (OPT(1..k-1)+OPT(k+1..j-1))
X, matches x; ‘

General form: Doesn’t start at 1

OPT(i..j)=MAX(OPT(i..j-1),
1+MAX, ; ;.5 (OPT(i..k-1)+OPT(k+1.j-1)))

Xj matches X;
48

i RNA Secondary Structure

= 2D Array OPT(i,j) for i<j represents optimal # of
matches entirely for segment i..j

= Forj-i <4 set OPT(i,j)=0 (no sharp bends)

= Then compute OPT(i,j) values when
j-i=5,6,...,n-1 in turn using recurrence.

= Return OPT(1,n)

= Total of O(n3) time

= Can also record matches along the way to produce S

= Algorithm is similar to the polynomial-time algorithm for
Context-Free Languages based on Chomsky Normal Form
from 322

= Both use dynamic programming over intervals

49

Sequence Alignment:

i Edit Distance

= Given:
= Two strings of characters A=a, a, ... a,, and
B=b, b, ... b,
= Find:

= The minimum number of edit steps needed
to transform A into B where an edit can be:

= insert a single character
= delete a single character
= substitute one character by another

50

i Sequence Alignment vs Edit Distance

= Sequence Alignment

= Insert corresponds to aligning with a “=” in the first
string

= Cost & (in our case 1)

= Delete corresponds to aligning with a “~” in the
second string

= Cost & (in our case 1)

= Replacement of an a by a b corresponds to a
mismatch

= Cost o, (in our case 1 if a#b and 0 if a=b)

= In Computational Biology this alignment
algorithm is attributed to Smith & Waterman

51

i Applications

= "diff" utility — where do two files differ

= Version control & patch distribution —
save/send only changes
= Molecular biology

= Similar sequences often have similar origin
and function

= Similarity often recognizable despite
millions or billions of years of evolutionary
divergence

52

Growth of GenBank

15000

o

13500

-
]
L

12000

-
=
L

10500

2000

]
L

7500

6000

Sequences (millions)

4500
3000

W Ease Pairs
21 |=+—Sequences

0 \ P S SR NN B (TR G T 0
1682 19585 1988 1991 1994 1997 2000

1500

Base Pairs of DMA (millions)

i Recursive Solution

= Sub-problems: Edit distance problems
for all prefixes of A and B that don’t
include all of both A and B

= Let D(i,j) be the number of edits
required to transform a, a, ... a; into
b, b, ... b,

= Clearly D(0,0)=0

54

i Computing D(n,m)

= Imagine how best sequence handles
the last characters a,, and b,
= If best sequence of operations
= deletes a,, then D(n,m)=D(n-1,m)+1
= inserts b, then D(n,m)=D(n,m-1)+1
= replaces a, by b,, then
D(n,m)=D(n-1,m-1)+1
= matches a,, and b, then
D(n,m)=D(n-1,m-1)

55

i Recursive algorithm D(n,m)

if n=0 then
return (m)
elseif m=0 then
return(n)
else
if a,=b,, then
replace-cost < 0 }
else cost of substitution of a, by b, (if used)
replace-cost « 1
endif

return(min{ D(n-1, m) + 1,
D(n m-1) +
D(n-1, m- 1) + replace-cost})

56

Dynamic

ﬁ Programming

bj.1 b;
for j = 0to m; D(0,j) « j; endfor
fori =1to n; D(i,0) « i; endfor D(i-1, j-1) D(i-1, j)
fori=1ton
. a;_4
forj=1tom
if a=b; then T
replace-cost«0 === ——— +--~--- .
DG, j-1) D@, J)

else
replace-cost < 1 e

endif
D(i,j) « min {D(i-1,j) + 1,
D(i, j-1) + 1,
D(i-1, j-1) + replace-cost}
endfor
endfor

57

Example run with

‘ ﬁ AGACATTG and GAGTTA

A G A C A T
o 1 2 3 4 5 6

T G
7 8

G 1

A2

G 3

T 4

T 5

A 6

58

Example run with

‘ ﬁ AGACATTG and GAGTTA

A G A CA TT G
11213 145|678
11112 | 3|4|5]|6 |7

VLLODSV D
ola|slw|N|=|o

59

Example run with

‘ ﬁ AGACATTG and GAGTTA

A

oo | =
o|~ | =

C
4|5
3|4

—
NN a
alNjw | B

VLILDV D
ola|slw|N|=|o

60

Example run with
AGACATTG and GAGTTA

>
S O =N R ey

olalala
N[N|w | P>
NN | Ll
wlw|rlo
Al | =
olo|lol~]| =
oo | |

VLILDV D
ola|~lw|N| =|o

61

Example run with
AGACATTG and GAGTTA

AGACATT G
o 1[2]|3]4|5|6|[7]8
al1|l1[1[2]3]4]|5]|6]|7
> 2 1|2[1]2|3|4|5]|6
al3| 2|12 2|3|4|5]5
= | 4| 3|2|2|3|3|3|4]5
~|5| 4/3|3|3[4[3|3]|4
> | 6| 5|4 |3 |4|3|4|4]4

62

Example run with
AGACATTG and GAGTTA

A G A CA TT G

0+ 142434 44 54647« 8
() i‘\ 111424 344454647
> 2] 142 [1+24344<546
o3| 2/1+2|29¢344+545
=4 3/2]|2+3[3]|34445
=5[] 4|33 |344[3[344
> 16| 5[4 |344|344[4]4

63

Example run with
AGACATTG and GAGTTA

b, N

A G A CA TT G
1¢ 243 ¢ 44 54 6«7 <«

1424 3¢ 445406 <

+2 2<¢ 3¢ 4 5 <«

3¢

VILDVD
O PUTTH R WP PO

P2WINS—
[eo
w
A
N
w

344|344 |4

AlhlO|lOI|O| N|C

64

i Reading off the operations

= Follow the sequence and use each
color of arrow to tell you what operation
was performed.

= From the operations can derive an
optimal alignment

AGACATTG
_GAG_TTA

65

i Saving Space

= To compute the distance values we only need the
last two rows (or columns)
= O(min(m,n)) space
= To compute the alignment/sequence of operations
= seem to need to store all O(mn) pointers/arrow colors
= Nifty divide and conquer variant that allows one to do
this in O(min(m,n)) space and retain O(mn) time
= In practice the algorithm is usually run on smaller chunks of

a large string, e.g. m and n are lengths of genes so a few
thousand characters

= Researchers want all alignments that are close to optimal

= Basic algorithm is run since the whole table of pointers
(2 bits each) will fitin RAM

= Ideas are neat, though

66

i Saving space

= Alignment corresponds to a path through the table
from lower right to upper left

= Must pass through the middle column

= Recursively compute the entries for the middle
column from the left
= If we knew the cost of completing each then we could figure
out where the path crossed
= Problem
= There are n possible strings to start from.
= Solution

= Recursively calculate the right half costs for each entry in this
column using alignments starting at the other ends of the two input
strings!
= Can reuse the storage on the left when solving the right
hand problem

67

Shortest paths with negative cost
i edges (Bellman-Ford)

= Dijskira’s algorithm failed with negative-cost
edges
= What can we do in this case?
= Negative-cost cycles could result in shortest paths
with length -co
= Suppose no negative-cost cycles in G
= Shortest path from s to t has at most n-1 edges

= If not, there would be a repeated vertex which
would create a cycle that could be removed
since cycle can’t have —ve cost

68

Shortest paths with negative cost
i edges (Bellman-Ford)

= We want to grow paths from s to t based
on the # of edges in the path

= Let Cost(s,t,i)=cost of minimum-length
path from s to t using up to i hops.
. Cost(v,t,O):{O if v=t
o otherwise

» Cost(v,t,i)=min{Cost(v,t,i-1),
MiNy wee(Cyw+Cost(w,t,i-1))}

69

i Bellman-Ford

= Observe that the recursion for
Cost(s,t,i) doesn’t change t
= Only store an entry for each v and i
= Termed OPT(v,i) in the text
= Also observe that to compute OPT(*,i)
we only need OPT(*,i-1)

= Can store a current and previous copy in
O(n) space.

70

i Bellman-Ford

ShortestPath(G,s,t)
for all ve V
OPT[v]¢<o
OPT[t]«<0
fori=1ton-1do
for all ve V do
OPT’[v]<=min,) (Cyw+OPT[W])
for all ve V do
OPT[v]<min(OPT’[v],OPT][v])
return OPT[s]

O(mn) time

71

i Negative cycles

= Claim: There is a negative-cost cycle that can reach t
iff for some vertex veV, Cost(v,t,n)<Cost(v,t,n-1)

= Proof:

= We already know that if there aren’t any then we only need
paths of length up to n-1

= For the other direction

= The recurrence computes Cost(v,t,i) correctly for any
number of hops i

= The recurrence reaches a fixed point if for every ve V,
Cost(v,t,i)=Cost(v,t,i-1)

= A negative-cost cycle means that eventually some
Cost(v,t,i) gets smaller than any given bound

= Can’t have a —ve cost cycle if for every ve V,
Cost(v,t,n)=Cost(v,t,n-1)

72

i Last details

= Can run algorithm and stop early if the OPT
and OPT’ arrays are ever equal

= Even better, one can update only neighbors v of
vertices w with OPT’[w]+OPT[w]

= Can store a successor pointer when we
compute OPT

= Homework assignment

= By running for step n we can find some vertex
Vv on a negative cycle and use the successor
pointers to find the cycle

73

i Bellman-Ford

74

i Bellman-Ford

75

76

ﬁ Bellman-Ford

ﬁ Bellman-Ford

78

79

80

i Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
» Update distances in reverse order of topological sort
* Only one pass through vertices required

* O(n+m) time

0. ©
JRLOZ e
T
R ¢ Vo 0
@
& @
AA'

81

