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CSE 421:  Introduction to 

Algorithms

Dealing with NP-completeness

Paul Beame
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What to do if the  problem you want 
to solve is NP-hard

� You might have phrased your problem too 

generally

� e.g., in practice, the graphs that actually arise are 

far from arbitrary

� maybe they have some special characteristic 

that allows you to solve the problem in your 

special case

� for example the Independent-Set problem is easy on 
“interval graphs”

� Exactly the case for interval scheduling!

� search the literature to see if special cases 

already solved
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What to do if the  problem you want 
to solve is NP-hard

� Try to find an approximation algorithm

� Maybe you can’t get the size of the best Vertex 

Cover but you can find one within a factor of 2 of 

the best

� Given graph G=(V,E), start with an empty cover

� While there are still edges in E left

� Choose an edge e={u,v} in E and add both u and v
to the cover

� Remove all edges from E that touch either u or v.

� Edges chosen don’t share any vertices so 

optimal cover size must be at least # of edges 

chosen
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What to do if the  problem you want 
to solve is NP-hard

� Polynomial-time approximation algorithms for 

NP-hard problems can sometimes be ruled 

out unless P=NP

� E.g. Coloring Problem: Given a graph G=(V,E)

find the smallest k such that G has a k-coloring.

� No approximation ratio better than 4/3 is 

possible unless P=NP

� Otherwise you would have to be able to 

figure out if a 3-colorable graph can be 

colored in <<<< 4 colors. i.e. if it can be             

3-colored
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Travelling Sales Problem

� TSP

� Given a weighted graph G find of a 

smallest weight tour that visits all vertices 

in G

� NP-hard

� Notoriously easy to obtain close to 
optimal solutions
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Minimum Spanning Tree 
Approximation
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Minimum Spanning Tree 
Approximation: Factor of 2

MST(G) ≤ TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Any tour contains a spanning tree 
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Why did this work?

� We found an Euler tour on a graph that 
used the edges of the original graph 
(possibly repeated).

� The weight of the tour was the total 
weight of the new graph.

� Suppose now

� All edges possible

� Weights satisfy triangle inequality

� c(u,w) ≤ c(u,v)+c(v,w)
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Minimum Spanning Tree 
Approximation: Triangle Inequality

Can shortcut edges 
• Go to next new vertex
on the Euler tour
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Minimum Spanning Tree 
Approximation: Factor of 2

TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Shortcut edges

11

Christofides Algorithm:                      
A factor 3/2 approximation

� Any Eulerian subgraph of the weighted complete 
graph will do
� Eulerian graphs require that all vertices have even degree so

� Christofides Algorithm
� Compute an MST T

� Find the set O of odd-degree vertices in T

� Add a minimum-weight perfect matching M on the vertices in 
O to T to make every vertex have even degree

� There are an even number of odd-degree vertices!

� Use an Euler Tour E in T∪∪∪∪M and then shortcut as before

� Claim: Cost(E) ≤ 1.5 TOUROPT
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Christofides Approximation
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Christofides Approximation

Claim: 2 Cost(M) ≤≤≤≤ TOUROPT

Any tour costs at least the cost of two matchings on O
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Knapsack Problem

� For any εεεε >0 can get an algorithm that 
gets a solution within (1+εεεε) factor of 
optimal with running time O(n2(1/ε)2)

� “Polynomial-Time Approximation Scheme”

or PTAS 

� Based on maintaining just the high order 

bits in the dynamic programming solution. 
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What to do if the  problem you want 
to solve is NP-hard

� More on approximation algorithms
� Recent research has classified problems based on what 

kinds of approximations are possible if P≠≠≠≠NP

� Best: (1+εεεε) factor for any εεεε>0.
� packing and some scheduling problems, TSP in plane

� Some fixed constant factor > 1, e.g. 2, 3/2, 100
� Vertex Cover, TSP in space, other scheduling problems 

� ΘΘΘΘ(log n) factor
� Set Cover, Graph Partitioning problems

� Worst: ΩΩΩΩ(n1-εεεε) factor for any εεεε>0
� Clique, Independent-Set, Coloring
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What to do if the  problem you want 
to solve is NP-hard

� Try an algorithm that is provably fast “on 

average”.

� To even try this one needs a model of what a 

typical instance is.

� Typically, people consider “random graphs”

� e.g. all graphs with a given # of edges are 

equally likely

� Problems:

� real data doesn’t look like the random graphs

� distributions of real data aren’t analyzable
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What to do if the  problem you want 
to solve is NP-hard

� Try to search the space of possible hints/certificates 
in a more efficient way and hope it is quick enough

� Backtracking search  
� E.g. For SAT there are 2n possible truth assignments
� If we set the truth values one-by-one we might be able to 

figure out whole parts of the space to avoid, 

� e.g.  After setting x1←←←←1, x2←←←←0 we don’t even need to 
set x3 or x4 to know that it won’t satisfy
(¬¬¬¬x1 ∨∨∨∨ x2) ∧∧∧∧ (¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x4 ∨∨∨∨ ¬¬¬¬x3) ∧∧∧∧ (x1 ∨∨∨∨ ¬¬¬¬x4)

� Related technique: branch-and-bound

� Backtracking search can be very effective even 
with exponential worst-case time

� For example, the best SAT algorithms used in practice 
are all variants on backtracking search and can solve 
surprisingly large problems – more later
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What to do if the  problem you want 
to solve is NP-hard

� Use heuristic algorithms and hope they 
give good answers

� No guarantees of quality

� Many different types of heuristic algorithms

� Many different options, especially for 

optimization problems, such as TSP, 

where we want the best solution.

� We’ll mention several on following slides
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Heuristic algorithms for
NP-hard problems

� local search for optimization problems

� need a notion of two solutions being 
neighbors

� Start at an arbitrary solution S

� While there is a neighbor T of S that is 
better than S

� S←T
� Usually fast but often gets stuck in a local 

optimum and misses the global optimum
� With some notions of neighbor can take a long 

time in the worst case
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e.g., Neighboring solutions for TSP

Solution S Solution T

Two solutions are neighbors 

iff there is a pair of edges you can

swap to transform one to the other
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Heuristic algorithms for
NP-hard problems

� randomized local search
� start local search several times from random starting points and 

take the best answer found from each point
� more expensive than plain local search but usually much 

better answers

� Metropolis algorithm
� like (randomized) local search but at each step choose a random 

neighbor.  Always move if it is better but sometimes move to a 
worse neighbor with some fixed probability

� often used in practice but slow to converge in the worst 
case and still can get stuck in local optimum

� simulated annealing
� like Metropolis algorithm but probability of going to a worse 

neighbor is set to decrease with time on a “cooling schedule” as, 
presumably, solution is closer to optimal

� analogy with slow cooling to get to lowest energy state in a 
crystal (or in forging a metal)

� slower to converge than Metropolis
� most improvement occurs at some fixed temperature

� answers not much better than Metropolis
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Heuristic algorithms for
NP-hard problems

� genetic algorithms
� view each solution as a string (analogy with DNA)

� maintain a population of good solutions

� allow random mutations of single characters of individual 
solutions

� combine two solutions by taking part of one and part of 
another (analogy with crossover in sexual reproduction)

� get rid of solutions that have the worst values and make 
multiple copies of solutions that have the best values 
(analogy with natural selection -- survival of the fittest).

� little evidence that they work well and they are usually 
very slow

� as much religion as science
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Heuristic algorithms

� artificial neural networks
� based on very elementary model of human neurons

� Set up a circuit of artificial neurons

� each artificial neuron is an analog circuit gate whose 
computation depends on a set of connection strengths

� Train the circuit

� Adjust the connection strengths of the neurons by giving 
many positive & negative training examples and seeing if 
it behaves correctly

� The network is now ready to use

� useful for ill-defined classification problems such as optical 
character recognition but not typical cut & dried problems
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Other directions

� DNA computing
� Each possible hint for an NP problem is represented as 

a string of DNA

� fill a test tube with all possible hints

� View verification algorithm as a series of tests

� e.g. checking each clause is satisfied in case of 
Satisfiability

� For each test in turn

� use lab operations to filter out all DNA strings that 
fail the test (works in parallel on all strings; uses PCR)

� If any string remains the answer is a YES.

� Relies on fact that Avogadro’s # 6 x 1023 is large to get enough 
strings to fit in a test-tube. 

� Error-prone & problem sizes typically very small!
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Other directions

� Quantum computing
� Use physical processes at the quantum level to implement 

“weird” kinds of circuit gates
� unitary transformations

� Quantum objects can be in a superposition of many pure 
states at once

� can have n objects together in a superposition of 2n states
� Each quantum circuit gate operates on the whole 

superposition of states at once
� inherent parallelism but classical randomized algorithms 

have a similar parallelism: not enough on its own
� Advantage over classical: parallel copies interfere with 

each other.

� Need totally new kinds of algorithms to work well. Theoretically 
able to factor efficiently but huge practical problems: errors, 
decoherence.  


