CSE 421: Introduction to Algorithms

Dealing with NP-completeness

Paul Beame

What to do if the problem you want to solve is NP-hard

- Try to find an approximation algorithm
 - Maybe you can't get the size of the best Vertex Cover but you can find one within a factor of 2 of the best
 - Given graph **G**=(**V**,E), start with an empty cover
 - While there are still edges in E left
 - Choose an edge e={u,v} in E and add both u and v to the cover
 - Remove all edges from **E** that touch either **u** or **v**.
 - Edges chosen don't share any vertices so optimal cover size must be at least # of edges chosen

What to do if the problem you want to solve is NP-hard

- You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special case
 - for example the Independent-Set problem is easy on "interval graphs"
 - Exactly the case for interval scheduling!
 - search the literature to see if special cases already solved

2

What to do if the problem you want to solve is NP-hard

- Polynomial-time approximation algorithms for NP-hard problems can sometimes be ruled out unless P=NP
 - E.g. Coloring Problem: Given a graph G=(V,E) find the smallest k such that G has a k-coloring.
 - No approximation ratio better than 4/3 is possible unless P=NP
 - Otherwise you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors. i.e. if it can be 3-colored

Travelling Sales Problem

TSP

- Given a weighted graph G find of a smallest weight tour that visits all vertices in G
- NP-hard
- Notoriously easy to obtain close to optimal solutions

<section-header>

Minimum Spanning Tree Approximation: Factor of 2

$MST(G) \leq TOUR_{OPT}(G) \leq 2 \; MST(G) \leq 2 \; TOUR_{OPT}(G)$

Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
 - All edges possible
 - Weights satisfy triangle inequality
 - $c(u,w) \leq c(u,v) + c(v,w)$

5

Christofides Algorithm: A factor 3/2 approximation

- Any Eulerian subgraph of the weighted complete graph will do
 - Eulerian graphs require that all vertices have even degree so
- Christofides Algorithm
 - Compute an MST T
 - Find the set O of odd-degree vertices in T
 - Add a minimum-weight perfect matching M on the vertices in O to T to make every vertex have even degree
 - There are an even number of odd-degree vertices!
 - Use an Euler Tour E in T∪M and then shortcut as before
- Claim: Cost(E) ≤ 1.5 TOUR_{OPT}

Christofides Approximation

<section-header><section-header><section-header><image><image>

What to do if the problem you want to solve is NP-hard

- More on approximation algorithms
 - Recent research has classified problems based on what kinds of approximations are possible if P≠NP
 - Best: $(1+\epsilon)$ factor for any $\epsilon > 0$.
 - packing and some scheduling problems, TSP in plane
 - Some fixed constant factor > 1, e.g. 2, 3/2, 100
 - Vertex Cover, TSP in space, other scheduling problems
 - O(log n) factor
 - Set Cover, Graph Partitioning problems
 - Worst: Ω(n^{1-ε}) factor for any ε>0
 - Clique, Independent-Set, Coloring

Knapsack Problem

- For any ε >0 can get an algorithm that gets a solution within (1+ε) factor of optimal with running time O(n²(1/ε)²)
 - "Polynomial-Time Approximation Scheme" or PTAS
 - Based on maintaining just the high order bits in the dynamic programming solution.

14

What to do if the problem you want to solve is NP-hard

- Try an algorithm that is provably fast "on average".
 - To even try this one needs a model of what a typical instance is.
 - Typically, people consider "random graphs"
 - e.g. all graphs with a given # of edges are equally likely
 - Problems:
 - real data doesn't look like the random graphs
 - distributions of real data aren't analyzable

What to do if the problem you want to solve is NP-hard

Try to search the space of possible hints/certificates in a more efficient way and hope it is quick enough
 Backtracking search

 E.g. For SAT there are 2ⁿ possible truth assignments
 If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
 e.g. After setting x₁ ← 1, x₂ ← 0 we don't even need to set x₃ or x₄ to know that it won't satisfy (¬x₁ ∨ x₂) ∧ (¬x₂ ∨ x₃) ∧ (x₄ ∨ ¬x₃) ∧ (x₁ ∨ ¬x₄)

 Related technique: branch-and-bound
 Backtracking search can be very effective even with exponential worst-case time

 For example, the best SAT algorithms used in practice are all variants on backtracking search and can solve surprisingly large problems – more later

17

What to do if the problem you want to solve is NP-hard

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - Many different types of heuristic algorithms
 - Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We'll mention several on following slides

Heuristic algorithms for NP-hard problems

- Iocal search for optimization problems
 - need a notion of two solutions being neighbors
 - Start at an arbitrary solution S
 - While there is a neighbor T of S that is better than S

■ S←T

- Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case

Heuristic algorithms for **NP-hard** problems

randomized local search

- start local search several times from random starting points and take the best answer found from each point more expensive than plain local search but usually much better answers

Metropolis algorithm

- like (randomized) local search but at each step choose a random neighbor. Always move if it is better but sometimes move to a worse neighbor with some fixed probability
 - often used in practice but slow to converge in the worst case and still can get stuck in local optimum

simulated annealing

- like Metropolis algorithm but probability of going to a worse neighbor is set to decrease with time on a "cooling schedule" as, presumably, solution is closer to optimal analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal) slower to converge than Metropolis

 - most improvement occurs at some fixed temperature
 - answers not much better than Metropolis

21

Heuristic algorithms for **NP-hard** problems

genetic algorithms

- view each solution as a string (analogy with DNA)
- maintain a population of good solutions
- allow random mutations of single characters of individual solutions
- combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
- get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).
- little evidence that they work well and they are usually very slow
 - as much religion as science

22

Heuristic algorithms

artificial neural networks

- based on very elementary model of human neurons
- Set up a circuit of artificial neurons
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
- Train the circuit
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
- The network is now ready to use
- useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems

Other directions

- DNA computing
 - Each possible hint for an NP problem is represented as a string of DNA
 - fill a test tube with all possible hints
 - View verification algorithm as a series of tests
 - e.g. checking each clause is satisfied in case of Satisfiability
 - For each test in turn
 - use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings: uses PCR)
 - If any string remains the answer is a YES.
 - Relies on fact that Avogadro's # 6 x 10²³ is large to get enough strings to fit in a test-tube.
 - Error-prone & problem sizes typically very small!

Other directions

- Quantum computing
 - Use physical processes at the quantum level to implement "weird" kinds of circuit gates
 - unitary transformations
 - Quantum objects can be in a superposition of many pure states at once
 - can have n objects together in a superposition of 2ⁿ states
 - Each quantum circuit gate operates on the whole superposition of states at once
 - inherent parallelism but classical randomized algorithms have a similar parallelism: not enough on its own
 - Advantage over classical: parallel copies interfere with each other.
 - Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.