
CSE 421: Review	

Larry Ruzzo	

Summer 2011	

	

2	

Complexity, I	

Asymptotic Analysis	

Best/average/worst cases	

Upper/Lower Bounds	

Big O, Theta, Omega	

Analysis methods	

loops 	

recurrence relations	

common data structures, subroutines	

5	

Graph Algorithms	

Graphs	

Representation (edge list/adjacency matrix)	

Breadth/depth first search	

Connected components	

Shortest paths/Bipartitness/2-Colorability	

DAGS and topological ordering	

DFS/Articulation points/Biconnected components	

7	

Design Paradigms	

Greedy	

Divide & Conquer	

recursive solution, superlinear work, balanced
subproblems, recurrence relations, solutions, Master
Theorem	

Dynamic Programming	

recursive solution, redundant subproblems, few	

do all in careful order and tabulate 	

(usually far superior to “memoization”)	

Powerful Subproblems	

Flow, Matching, Linear Programming	

	

8	

Examples	

Greedy	

Interval Scheduling Problems (3)	

Huffman Codes	

Examples where greedy fails (stamps/change, scheduling, knap, RNA,…)	

9	

Examples	

Divide & Conquer	

Merge sort	

Closest pair of points	

Integer multiplication (Karatsuba)	

Powering	

12	

Examples	

Dynamic programming	

Weighted Interval Scheduling	

Max Subarray Sum	

Knapsack	

String Search with Wildcards	

Edit Distance/String Alignment	

Counting Solutions	

Shortest Paths	

RNA Folding	

13	

Examples	

Flow and matching	

Residual graph, augmenting paths, max-flow/min-cut,
Ford-Fulkerson and Edmonds-Karp algorithms,
integrality, reducing bipartite matching to flow	

15	

Complexity, II	

P vs NP	

Big-O and poly vs exponential growth	

Definition of NP – hints/certificates and verifiers	

Example problems from slides, reading & hw	

SAT, 3-SAT, circuit SAT, vertex cover, quadratic Diophantine equations,
clique, independent set, TSP, Hamilton cycle, coloring, max cut, knapsack	

P ⊆ NP ⊆ Exp (and worse)	

Definition(s) of (polynomial time) reduction	

SAT ≤p VertexCover example (how, why correct, why ≤p, implications)	

Definition of NP-completeness	

NP-completeness proofs	

2x, 1.5x approximations to Euclidean TSP	

17	

Some Typical Exam Questions	

Give O() bound on 17n*(n-3+logn)	

Give O() bound on some code {for i=1 to n {for j …}}!
True/False: If X is O(n2), then it’s rarely more than n3 +14 steps.	

Explain why a given greedy alg is/isn’t correct	

Give a run time recurrence for a recursive alg, or solve a simple one	

Simulate any of the algs we’ve studied	

Give an alg for problem X, maybe a variant of one we’ve studied, or

prove it’s in NP	

Understand parts of correctness proof for an algorithm or reduction	

Implications of NP-completeness	

Reductions	

NP-completeness proofs	

421 Final	

