CSE 421: Review

Larry Ruzzo Summer 2011

Complexity, I

Asymptotic Analysis Best/average/**worst** cases Upper/Lower Bounds Big O, Theta, Omega Analysis methods loops recurrence relations common data structures, subroutines

Graph Algorithms

Graphs

- Representation (edge list/adjacency matrix)
- Breadth/depth first search
- Connected components
- Shortest paths/Bipartitness/2-Colorability
- DAGS and topological ordering
- DFS/Articulation points/Biconnected components

Design Paradigms

Greedy

Divide & Conquer

recursive solution, superlinear work, balanced subproblems, recurrence relations, solutions, Master Theorem

Dynamic Programming

recursive solution, redundant subproblems, few

do all in careful order and tabulate

(usually far superior to "memoization")

Powerful Subproblems

Flow, Matching, Linear Programming

Greedy

- Interval Scheduling Problems (3)
- Huffman Codes

Examples where greedy fails (stamps/change, scheduling, knap, RNA,...)

Divide & Conquer

Merge sort

Closest pair of points

Integer multiplication (Karatsuba)

Powering

Dynamic programming Weighted Interval Scheduling Max Subarray Sum Knapsack String Search with Wildcards Edit Distance/String Alignment Counting Solutions Shortest Paths RNA Folding

Flow and matching

Residual graph, augmenting paths, max-flow/min-cut, Ford-Fulkerson and Edmonds-Karp algorithms, integrality, reducing bipartite matching to flow

Complexity, II

P vs NP

Big-O and poly vs exponential growth

Definition of NP – hints/certificates and verifiers

Example problems from slides, reading & hw

SAT, 3-SAT, circuit SAT, vertex cover, quadratic Diophantine equations, clique, independent set, TSP, Hamilton cycle, coloring, max cut, knapsack

 $P \subseteq NP \subseteq Exp$ (and worse)

Definition(s) of (polynomial time) reduction

SAT \leq_p VertexCover example (how, why correct, why \leq_p , implications)

Definition of NP-completeness

NP-completeness proofs

2x, I.5x approximations to Euclidean TSP

Some Typical Exam Questions

Give O() bound on 17n*(n-3+logn)

Give O() bound on some code {for i=1 to n {for j ...}}

True/False: If X is $O(n^2)$, then it's rarely more than $n^3 + 14$ steps.

Explain why a given greedy alg is/isn't correct

Give a run time recurrence for a recursive alg, or solve a simple one Simulate any of the algs we've studied

Give an alg for problem X, maybe a variant of one we've studied, or

prove it's in NP

Understand parts of correctness proof for an algorithm or reduction

Implications of NP-completeness

Reductions

NP-completeness proofs

