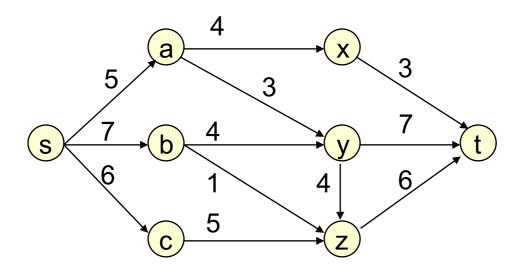
CSE 421 Introduction to Algorithms Summer 2011

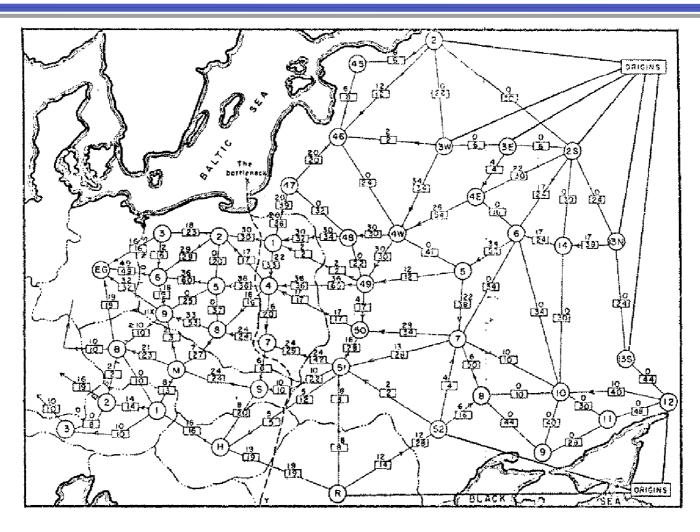
The Network Flow Problem

The Network Flow Problem



How much stuff can flow from s to t?

Soviet Rail Network, 1955



Reference: *On the history of the transportation and maximum flow problems*. Alexander Schrijver in Math Programming, 91: 3, 2002.

Net Flow: Formal Definition

Given:

A digraph G = (V,E)
Two vertices s,t in V
(source & sink)

A capacity $c(u,v) \ge 0$ for each $(u,v) \in E$ (and c(u,v) = 0 for all nonedges (u,v))

Find:

A *flow function* f: $V \times V \rightarrow R \text{ s.t.}$, for all u,v:

$$- f(u,v) \le C(u,v)$$
 [Capacity Constraint]

$$- f(u,v) = -f(v,u)$$
 [Skew Symmetry]

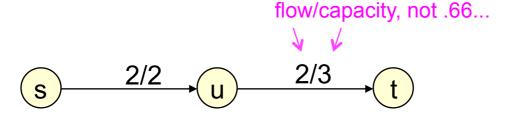
- if
$$u \neq s,t$$
, $f(u,V) = 0$ [Flow Conservation]

Maximizing to tal flow |f| = f(s,V)

Notation:

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

Example: A Flow Function



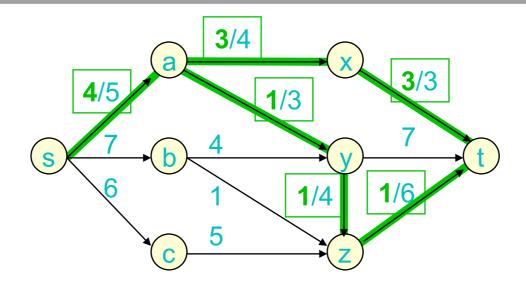
$$f(s,u) = f(u,t) = 2$$

$$f(u,s) = f(t,u) = -2 \quad \text{(Why?)}$$

$$f(s,t) = -f(t,s) = 0 \quad \text{(In every flow function for this G. Why?)}$$

$$f(u,V) = \sum_{v \in V} f(u,v) = f(u,s) + f(u,t) = -2 + 2 = 0$$

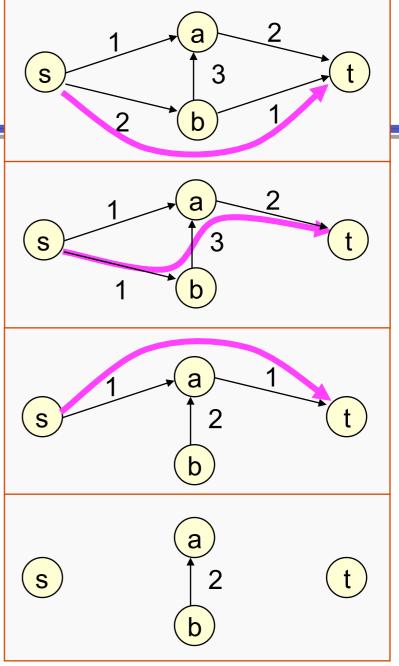
Example: A Flow Function



- Not shown: f(u,v) if ≤ 0
- Note: max flow ≥ 4 since
 f is a flow function, with |f| = 4

Max Flow via a Greedy Alg?

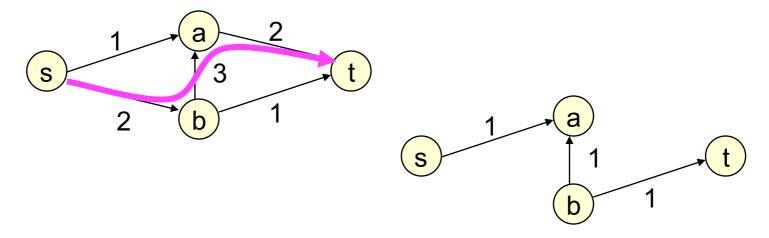
While there is an $s \rightarrow t$ path in G Pick such a path, p Find c_p , the min capacity of any edge in p Subtract c_p from all capacities on p Delete edges of capacity 0



Max Flow via a Greedy Alg?

This does NOT always find a max flow:

If you pick $s \rightarrow b \rightarrow a \rightarrow t$ first,

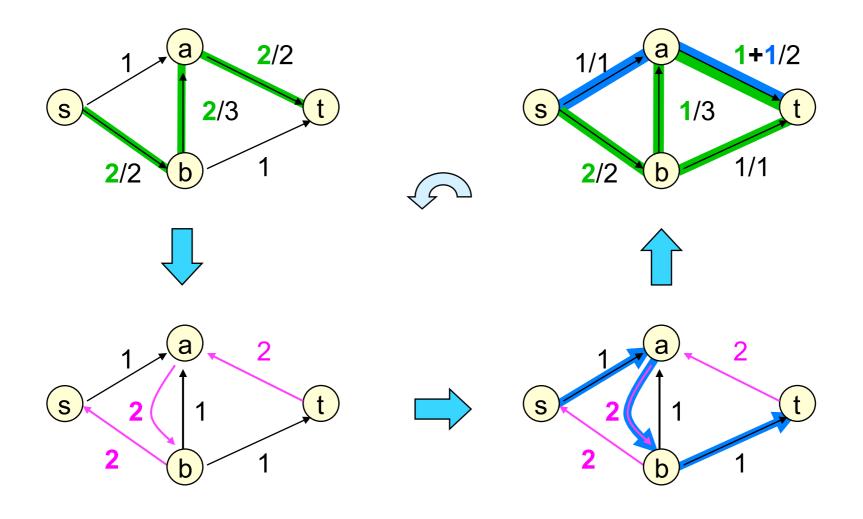


Flow stuck at 2. But flow 3 possible.

A Brief History of Flow

#	Year	Discoverer(s)	Bound	n = # of vertices
1	1951	Dantzig	$O(n^2mU)$	m= # of edges
2	1955	Ford & Fulkerson	O(nmU)	U = Max capacity
3	1970	Dinitz; Edmonds & Karp	O(nm²)	
4	1970	Dinitz	O(n ² m)	
5	1972	Edmonds & Karp; Dinitz	O(m ² logU)	Source: Goldberg & Rao, FOCS '97
6	1973	Dinitz;Gabow	O(nm logU)	FOCS 91
7	1974	Karzanov	$O(n^3)$	
8	1977	Cherkassky	O(n² sqrt(m))	
9	1980	Galil & Naamad	O(nm log ² n)	
10	1983	Sleator & Tarjan	O(nm log n)	
11	1986	Goldberg &Tarjan	$O(nm log (n^2/m))$	
12	1987	Ahuja & Orlin	$O(nm + n^2 log U)$	
13	1987	Ahuja et al.	O(nm log(n sqrt(log U)/(m+2))	
14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$	
15	1990	Cheriyan et al.	O(n ³ /log n)	
16	1990	Alon	$O(nm + n^{8/3} log n)$	
17	1992	King et al.	$O(nm + n^{2+\epsilon})$	
18	1993	Phillips & Westbrook	$O(nm(log_{m/n} n + log^{2+\epsilon} n)$	
19	1994	King et al.	$O(nm(log_{m/(n log n)} n)$	
20	1997	Goldberg & Rao	$O(m^{3/2} \log(n^2/m) \log U)$; $O(n^{2/3} m \log(n^2/m) \log U)$	
		•••		

Greed Revisited



Residual Capacity

The residual capacity (w.r.t. f) of (u,v) is $c_f(u,v) = c(u,v) - f(u,v)$

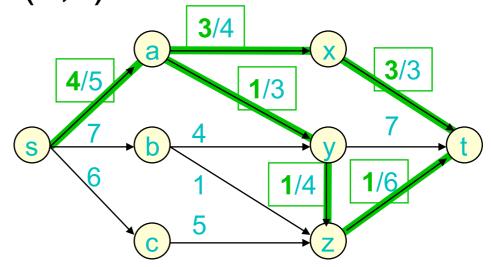
E.g.:

$$c_f(s,b) = 7;$$

$$c_f(a,x) = 1;$$

$$c_f(x,a) = 3;$$

$$c_f(x,t) = 0$$
 (a saturated edge)



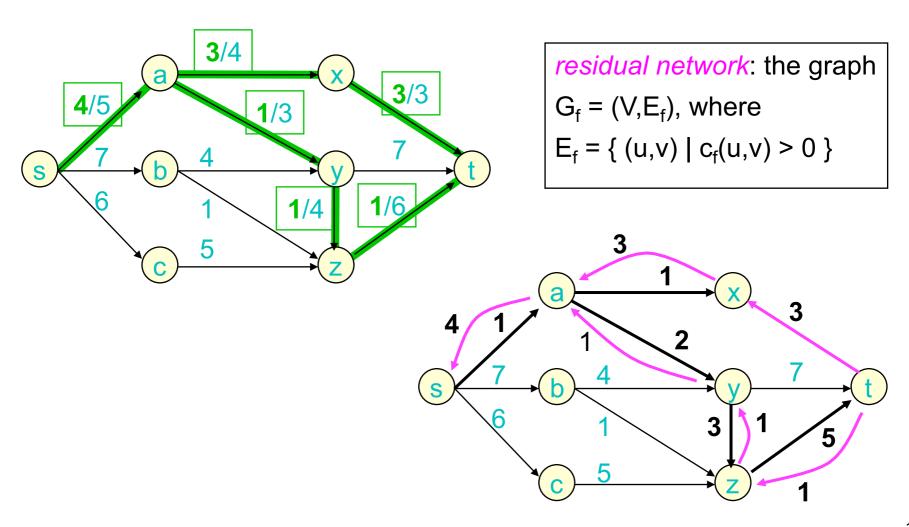
Residual Networks & Augmenting Paths

The *residual network* (w.r.t. f) is the graph $G_f = (V, E_f)$, where

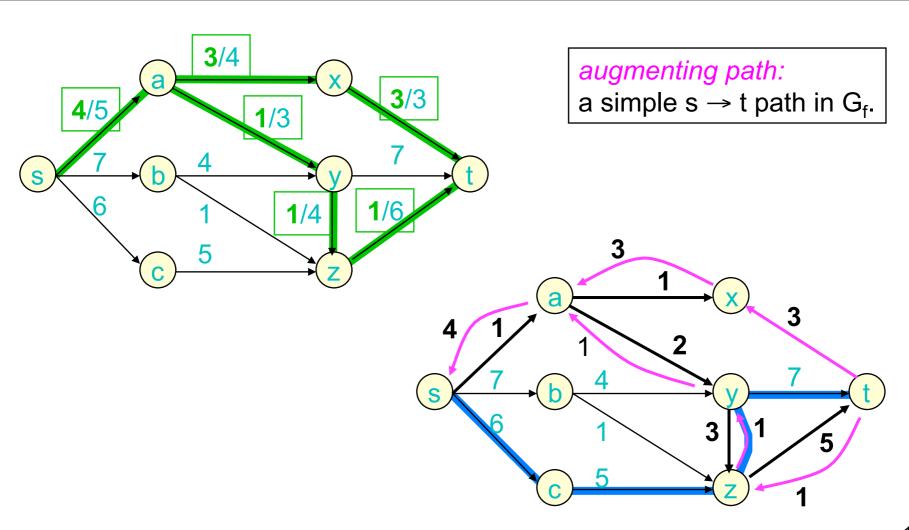
$$E_f = \{ (u,v) \mid c_f(u,v) > 0 \}$$

An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_f .

A Residual Network



An Augmenting Path

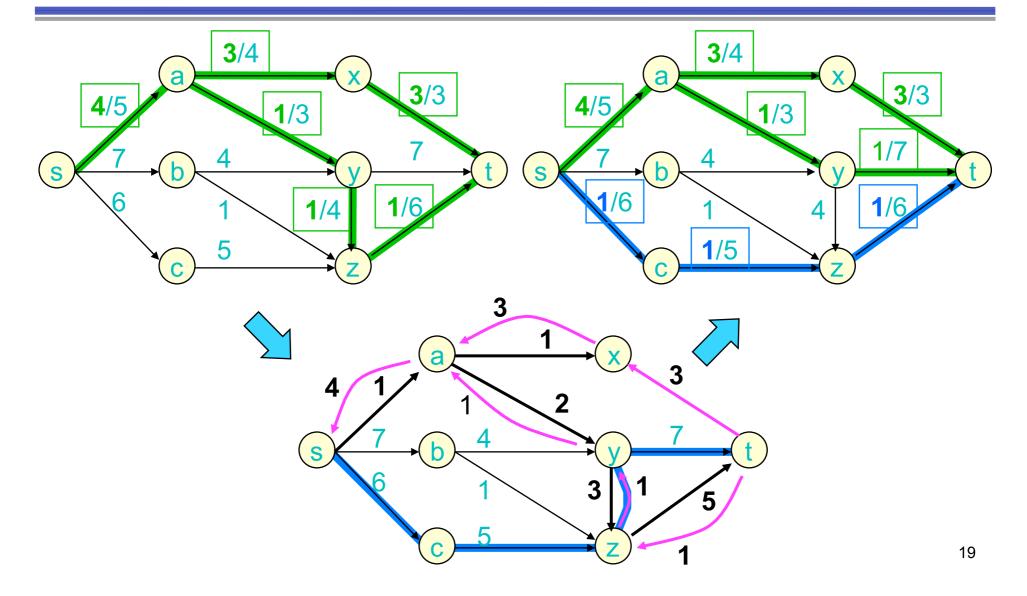


Lemma 1

If f admits an augmenting path p, then f is not maximal.

Proof: "obvious" -- augment along p by c_p , the min residual capacity of p's edges.

Augmenting A Flow



Lemma 1': Augmented Flows are Flows

If f is a flow & p an augmenting path of capacity c_p , then f' is also a valid flow, where

$$f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$$

Proof:

- a) Flow conservation easy
- b) Skew symmetry easy
- c) Capacity constraints pretty easy

Lma 1': Augmented $f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \end{cases}$ Flows are Flows

$$f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$$

f a flow & p an aug path of cap c_p , then f' also a valid flow.

Proof (Capacity constraints):

(u,v), (v,u) not on path: no change (u,v) on path:

$$f'(u,v) = f(u,v) + c_{p} f'(v,u) = f(v,u) - c_{p}$$

$$\leq f(u,v) + c_{f}(u,v)$$

$$= f(u,v) + c(u,v) - f(u,v)$$

$$\leq c(v,u)$$

$$= c(u,v)$$

Residual Capacity:

$$0 < c_p \le c_f(u,v) = c(u,v) - f(u,v)$$

Cap Constraints:

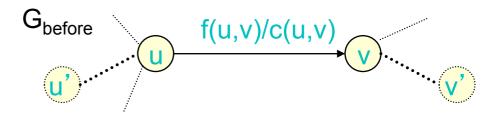
 $-c(v,u) \le f(u,v) \le c(u,v)$

 $G_{\rm f}$

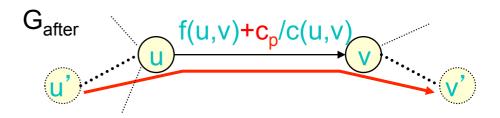
Let (u,v) be any edge in augmenting path. Note

$$c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$$

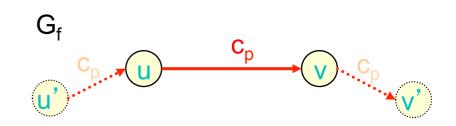
Case 1: $f(u,v) \ge 0$:



Add forward flow



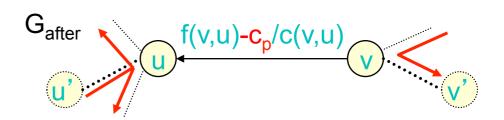
Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$



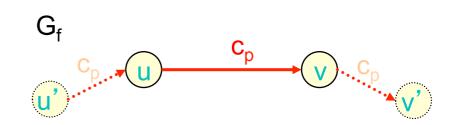
Case 2: $f(u,v) \le -c_p$: $f(v,u) = -f(u,v) \ge c_p$

 G_{before} f(v,u)/c(v,u) v v

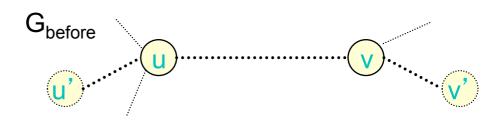
Cancel/redirect reverse flow



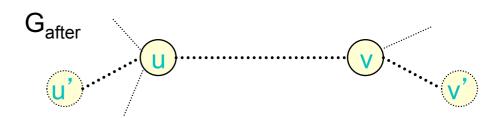
Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$



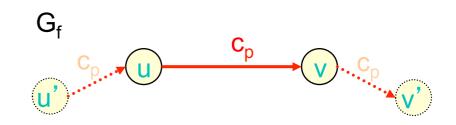
Case 3: $-c_p < f(u,v) < 0$:



???



Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$



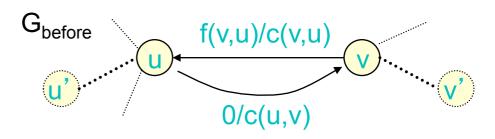
Case 3: $-c_p < f(u,v) < 0$ $c_p > f(v,u) > 0$: G_{before}

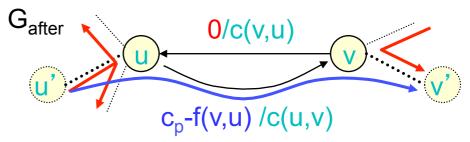
Both:

cancel/redirect reverse flow

and

add forward flow





Ford-Fulkerson Method

While G_f has an augmenting path, augment

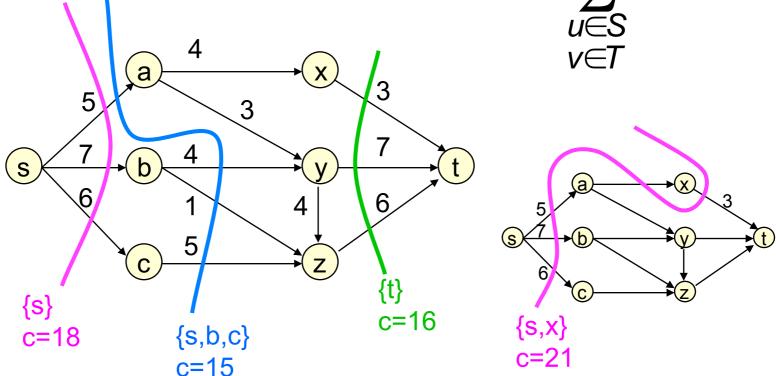
Questions:

- » Does it halt?
- » Does it find a maximum flow?
- » How fast?

Cuts

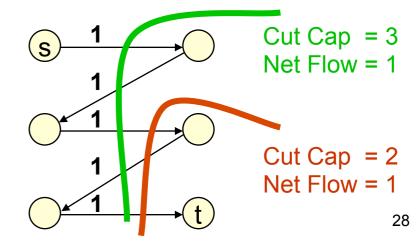
A partition S,T of V is a *cut* if $s \in S$, $t \in T$.

Capacity of cut S,T is $c(S,T) = \sum_{u \in S} c(u,v)$



Lemma 2

- For any flow f and any cut S,T,
 - the net flow across the cut equals the total flow, i.e., |f| = f(S,T), and
 - the net flow across the cut cannot exceed the capacity of the cut, i.e. f(S,T) ≤ c(S,T)
- Corollary:
 Max flow ≤ Min cut

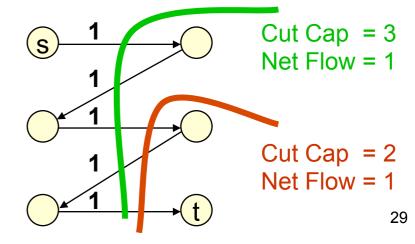


Lemma 2

For any flow f and any cut S,T, net flow across cut = total flow ≤ cut capacity Proof:

Track a flow unit. Starts at s, ends at t. crosses cut an odd # of times; net = 1.

Last crossing uses a forward edge totaled in C(S,T)



Max Flow / Min Cut Theorem

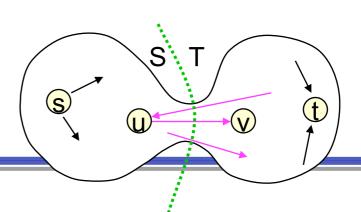
For any flow f, the following are equivalent

- (1) |f| = c(S,T) for some cut S,T (a min cut)
- (2) f is a maximum flow
- (3) f admits no augmenting path

Proof:

- $(1) \Rightarrow (2)$: corollary to lemma 2
- $(2) \Rightarrow (3)$: contrapositive of lemma 1

$$(3) \Longrightarrow (1)$$
 (no aug) \Longrightarrow (cut)



S = { u | ∃ an augmenting path wrt f from s to u }

$$T = V - S$$
; $s \in S$, $t \in T$

For any (u,v) in $S \times T$, \exists an augmenting path from s to u, but not to v.

:. (u,v) has 0 residual capacity:

$$(u,v) \in E \Rightarrow \text{saturated}$$
 $f(u,v) = c(u,v)$
 $(v,u) \in E \Rightarrow \text{no flow}$ $f(u,v) = 0 = -f(v,u)$

This is true for every edge crossing the cut, i.e.

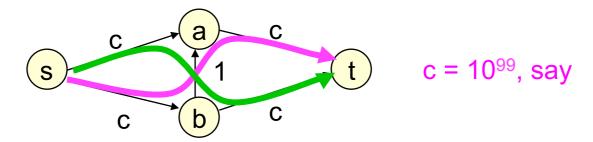
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S, v \in T, (u,v) \in E} f(u,v) = \sum_{u \in S, v \in T, (u,v) \in E} c(u,v) = c(S,T)$$
₃

Corollaries & Facts

If Ford-Fulkerson terminates, then it's found a max flow.

It will terminate if c(e) integer or rational (but may not if they're irrational).

However, may take exponential time, even with integer capacities:



Edmonds-Karp Algorithm

Use a shortest augmenting path (via Breadth First Search in residual graph)

Time: O(n m²)

BFS/Shortest Path Lemmas

Distance from s is never reduced by:

- Deleting an edge proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u

proof: BFS is unchanged, since v visited before

(u,v) examined

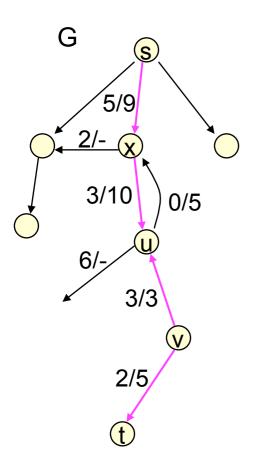
a back edge

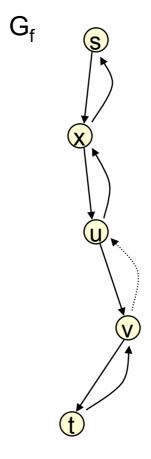
Lemma 3

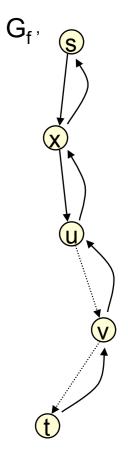
Let f be a flow, G_f the residual graph, and p a shortest augmenting path. Then no vertex is closer to s after augmentation along p.

Proof: Augmentation only deletes edges, adds back edges

Augmentation vs BFS







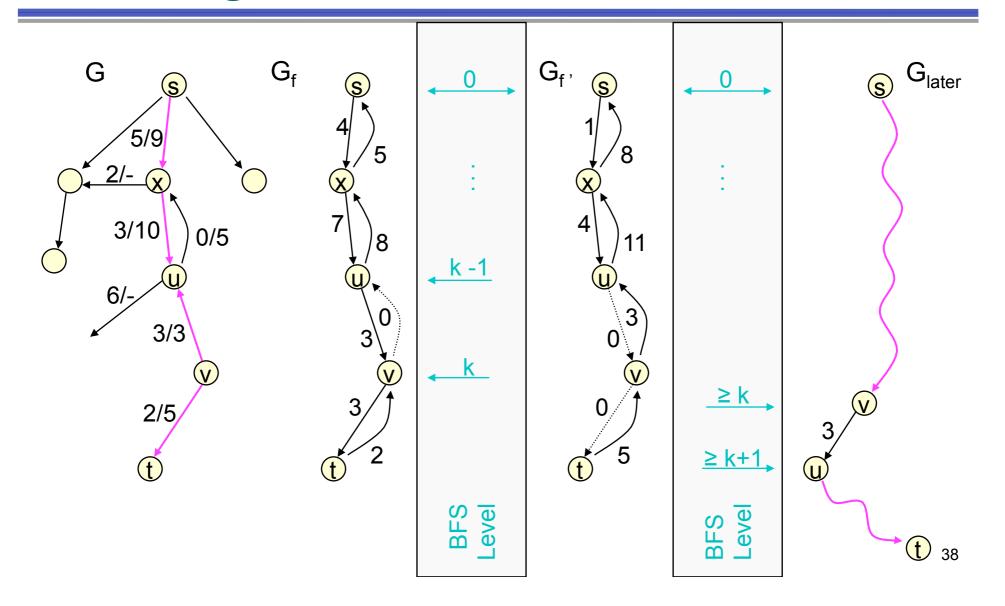
Theorem 2

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:

{*u,v*} is critical on augmenting path *p* if it's closest to *s* having min residual capacity. Won't be critical again until farther from *s*. So each edge critical at most *n* times.

Augmentation vs BFS Level



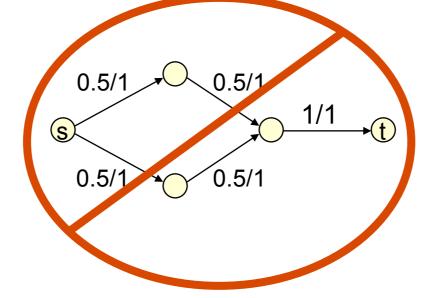
Corollary

Edmonds-Karp runs in O(nm²)

Flow Integrality Theorem

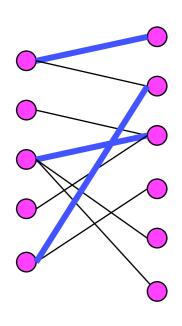
If all capacities are integers

- » The max flow has an integer value
- » Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)



A valid flow, but unnecessary

Bipartite Maximum Matching



Bipartite Graphs:

- G = (V,E)
- $V = L \cup R (L \cap R = \emptyset)$
- E⊆L×R

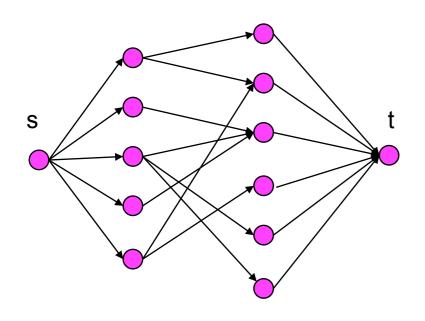
Matching:

 A set of edges M ⊆ E such that no two edges touch a common vertex

Problem:

 Find a matching M of maximum size

Reducing Matching to Flow



Given bipartite G, build flow network N as follows:

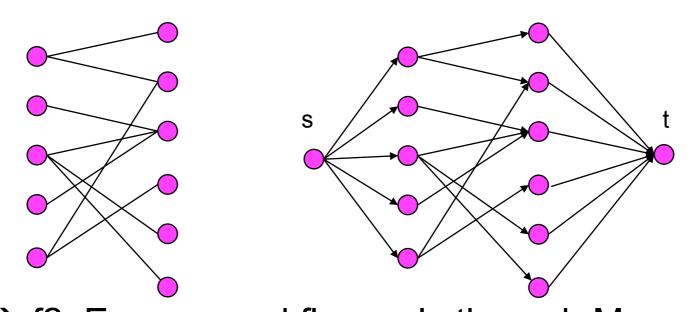
- Add source s, sink t
- Add edges $s \rightarrow L$
- Add edges R→ t
- All edge capacities 1

Theorem:

Max flow iff max matching

Reducing Matching to Flow

Theorem: Max matching size = max flow value



M → f? Easy – send flow only through M
 f → M? Flow integrality Thm, + cap constraints

Notes on Matching

- Max Flow Algorithm is probably overly general here
- But most direct matching algorithms use "augmenting path" type ideas similar to that in max flow – See text & homework
- Time mn^{1/2} possible via Edmonds-Karp

7.12 Baseball Elimination

Baseball Elimination

Team	Wins	Losses	To play	Against = g _{ij}			
i	w _i	l _i	g _i	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?

- » Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83.
- $w_i + g_i < w_i \implies \text{team i eliminated.}$
- » Only reason sports writers appear to be aware of.
- » Sufficient, but not necessary!

Baseball Elimination

Team	Wins	Losses	To play	Against = g _{ij}			
i	W _i	l _i	9 _i	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?

- » Philly can win 83, but still eliminated . . .
- » If Atlanta loses a game, then some other team wins one.

Remark. Depends on *both* how many games already won and left to play, *and* on whom they're against.

Baseball Elimination

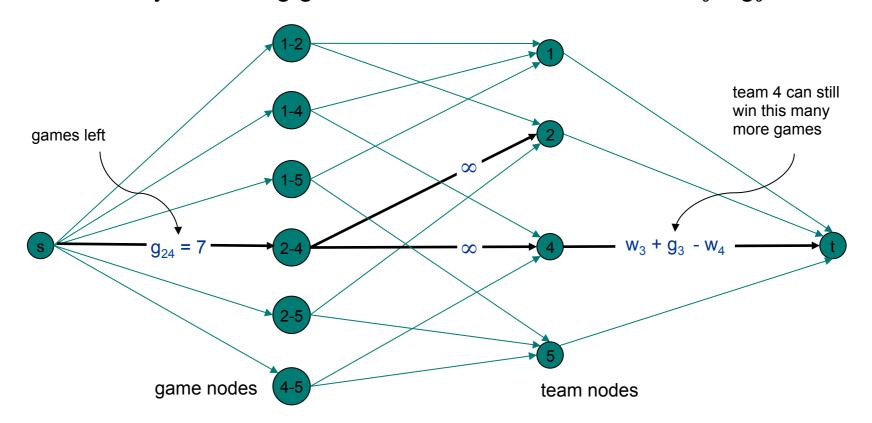
Baseball elimination problem.

- » Set of teams S.
- » Distinguished team $s \in S$.
- » Team x has won w_x games already.
- Teams x and y play each other g_{xy} additional times.
- » Is there any outcome of the remaining games in which team s finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation

Can team 3 finish with most wins?

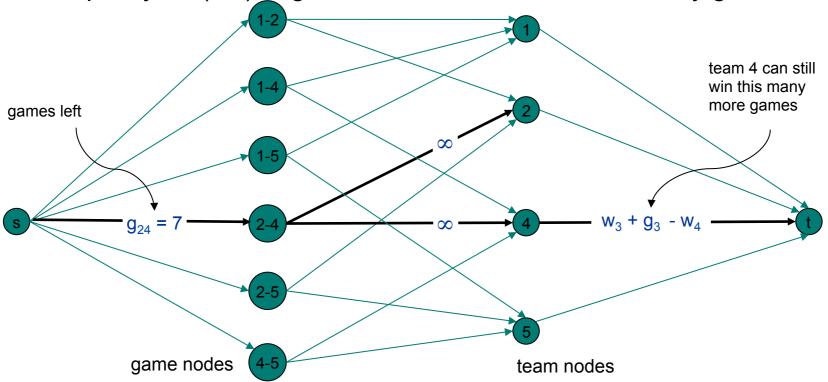
Assume team 3 wins all remaining games \Rightarrow w₃ + g₃ wins. Divvy remaining games so that all teams have \leq w₃ + g₃ wins.



Baseball Elimination: Max Flow Formulation

Theorem. Team 3 is not eliminated iff max flow saturates all edges leaving source.

Integrality \Rightarrow each remaining x-y game added to # wins for x or y. Capacity on (x, t) edges ensure no team wins too many games.



Team	Wins	Losses	To play	Against =g _{ij}				
i	W _i	I_i	g _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Team	Wins	Losses	To play	Against =g _{ij}				
i	W _i	I_{i}	g _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams could finish the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}

Have already won w(R) = 278 games.

Must win at least r(R) = 27 more.

Average team in R wins at least 305/4 > 76 games.

Certificate of elimination

$$T \subseteq S, \quad w(T) \coloneqq \sum_{i \in T}^{\# \text{ wins}} w_i, \quad g(T) \coloneqq \sum_{\{x,y\} \subseteq T}^{\# \text{ remaining games}} g_{xy},$$

LB on avg # games won

If
$$\frac{w(T) + g(T)}{|T|} > w_z + g_z$$
 then z eliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T* that eliminates z.

Proof idea. Let T^* = teams on source side of min cut.

	W	1	g	NY	Balt	Tor	Bos	
NY	90		11	-	1	6	4	
Baltimore	88		6	1		1	4	4.0.4
Toronto	87		10	6	1	-	4	g* = 1+6+1 = 8
Bøston	79		12	4	4	4	-	

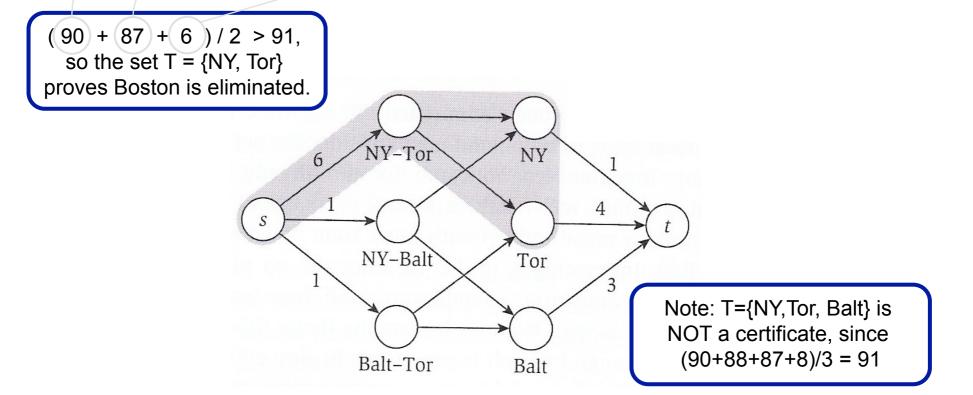


Fig 7.21 Min cut \Rightarrow no flow of value g*, so Boston eliminated.

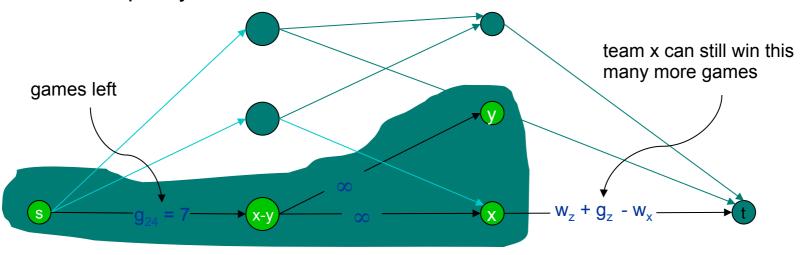
Pf of theorem.

Use max flow formulation, and consider min cut (A, B).

Define T* = team nodes on source side of min cut.

Observe $x-y \in A$ iff both $x \in T^*$ and $y \in T^*$.

infinite capacity edges ensure if $x-y \in A$ then $x \in A$ and $y \in A$ if $x \in A$ and $y \in A$ but $x-y \notin T^*$, then adding x-y to A decreases capacity of cut



Pf of theorem.

Use max flow formulation, and consider min cut (A, B).

Define T* = team nodes on source side of min cut.

Observe x-y
$$\in$$
 A iff both x \in T* and y \in T*. $g(S - \{z\}) > cap(A, B)$

$$= g(S - \{z\}) - g(T^*) + \sum_{x \in T^*} (w_z + g_z - w_x)$$

$$= g(S - \{z\}) - g(T^*) - w(T^*) + |T^*|(w_z + g_z)$$

Rearranging:

$$w_z + g_z < \frac{w(T^*) + g(T^*)}{|T^*|}$$

Matching & Baseball: Key Points

- Can (sometimes) take problems that seemingly have nothing to do with flow & reduce them to a flow problem
- How? Build a clever network; map allocation of stuff in original problem (match edges; wins) to allocation of flow in network. Clever edge capacities constraint solution to mimic original problem in some way. Integrality useful.

Matching & Baseball: Key Points

- Furthermore, in the baseball example, min cut can be translated into a succinct certificate or proof of some property that is much more transparent than "see, I ran max-flow and it says flow must be less than g*".
- These examples suggest why max flow is so important – it's a very general tool used in many other algorithms.