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Defining Efficiency	



“Runs fast on typical real problem instances”	


	


Pro: 	



sensible, bottom-line-oriented	



	



Con:	


moving target (diff computers, compilers, Moore’s law) 	



highly subjective (how fast is “fast”?  What’s “typical”?)	





4	



Efficiency	



Our correct TSP algorithm was incredibly slow	


Basically slow no matter what computer you have	


We want a general theory of “efficiency” that is	



Simple	


Objective	



Relatively independent of changing technology	


But still predictive – “theoretically bad” algorithms 
should be bad in practice and vice versa (usually)	
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Measuring efficiency	



Time ≈ # of instructions executed in a simple 
programming language	



only simple operations (+,*,-,=,if,call,…)	


each operation takes one time step	



each memory access takes one time step	


no fancy stuff (add these two matrices, copy this long 
string,…) built in; write it/charge for it as above	



 No fixed bound on the memory size	
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We left out things but...	



Things we’ve dropped	


memory hierarchy	



disk, caches, registers have many orders of magnitude 
differences in access time	



not all instructions take the same time in practice (+, ÷)	


different computers have different primitive instructions	



However, 	


the “RAM” model is useful for designing algorithms and 
measuring their efficiency	


one can usually tune implementations so that the 
hierarchy, etc., is not a huge factor	
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T!

n!

Complexity ���
analysis	



Problem size n	


Best-case complexity: min # steps algorithm 
takes on any input of size n	



Average-case complexity: avg # steps algorithm 
takes on inputs of size n	



Worst-case complexity: max # steps algorithm 
takes on any input of size n	
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Pros and cons:	



Best-case	


- unrealistic oversell	



Average-case	


- over what probability distribution?  (different people 

may have different “average” problems)	


- analysis often hard	



Worst-case	


+ a fast algorithm has a comforting guarantee	


-  may be too pessimistic	
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Why Worst-Case Analysis?	



Appropriate for time-critical applications 	


E.g. avionics, nuclear reactors	



Unlike Average-Case, no debate about what the 
right definition is	



If worst ≫ average, then (a) alg is doing something pretty 
subtle, & (b) are hard instances really that rare?	



Analysis often easier	


Result is often representative of “typical” problem 
instances	


Of course there are exceptions…	
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General Goals	



Characterize growth rate of (worst-case) run time as a 
function of problem size, up to a constant factor	


Why not try to be more precise?	



Technological variations (computer, compiler, OS, …) 
easily 10x or more	


Being more precise is a ton of work	


A key question is “scale up”: if I can afford to do it today, 
how much longer will it take when my business problems 
are twice as large?  (E.g., today: cn2, next year: c(2n)2 = 
4cn2 : 4 x longer.)	
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Complexity	



The complexity of an algorithm associates a number 
T(n), the worst-case time the algorithm takes on 
problems of size n, with each problem size n.	


	



Mathematically,	


T: N+ → R+	



I.e., T is a function that maps positive integers (problem 
sizes) to positive real numbers (number of steps).	
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Problem size !

Ti
m

e!

T(n)!

Complexity	
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Problem size !

Ti
m

e!

T(n)!

Complexity	



n log2n!

2n log2n!
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O-notation, etc.	



Given two functions f and g:N→R	


f(n) is O(g(n)) iff there is a constant c>0 so that 	


	

                      f(n) is eventually always ≤ c g(n)	



	



f(n) is Ω (g(n)) iff there is a constant c>0 so that 	


	

                      f(n) is eventually always ≥ c g(n) 	



	



f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that ���
	

 	

 	

eventually always c1g(n) ≤ f(n) ≤ c2g(n)	
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Examples	



10n2-16n+100 is O(n2)  	

also O(n3)	


10n2-16n+100 ≤ 11n2 for all n ≥ 10	



10n2-16n+100 is Ω (n2)  	

also Ω (n)	


10n2-16n+100 ≥ 9n2 for all n ≥16	



Therefore also 10n2-16n+100 is Θ (n2)	


	



10n2-16n+100 is not O(n) also not Ω (n3)	
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Properties	



Transitivity.	


If f = O(g) and g = O(h) then f = O(h).	


If f = Ω(g) and g = Ω(h) then f = Ω(h). 	


If f = Θ(g) and g = Θ(h) then f = Θ(h).	



	


Additivity.	



If f = O(h) and g = O(h) then f + g = O(h). 	


If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	


If f = Θ(h) and g = O(h) then f + g = Θ(h).	
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log grows slower than 
every polynomial	



Asymptotic Bounds for Some 
Common Functions	



Polynomials:  ���
	

a0 + a1n + … + adnd  is Θ(nd) if ad > 0���

	


Logarithms:  ���
	

O(loga n) = O(logb n) for any constants a,b > 0���

	



Logarithms:  ���
	

For all x > 0,  log n = O(nx)	
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2 + 2 is 4 	

2n2 + 5 n is O(n3)	


2 + 2 = 4 	

2n2 + 5 n = O(n3)	


4 = 2 + 2 	

O(n3) = 2n2 + 5 n 	



	

 	

 	

        	

	


All dogs are mammals 	

All mammals are dogs	



Bottom line:	


OK to put big-O in R.H.S. of equality, but not left.  	



[Better, but uncommon, notation:  T(n) ∈ O(f(n)).]	



“One-Way Equalities”	
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Working with O-Ω-Θ notation	



Claim:  For any a, and any b>0,  (n+a)b is Θ(nb)	


(n+a)b ≤ (2n)b  	

for n ≥ |a|���
	

= 2bnb ���
	

= cnb 	

 	

for c = 2b ���

so (n+a)b is O(nb) ���
	



(n+a)b ≥ (n/2)b 	

for n ≥ 2|a| (even if a < 0)                              
	

= 2-bnb ���
	

= c’n 	

 	

for c’ = 2-b ���

so (n+a)b is Ω (nb)	
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! 

loga b = x means ax = b

aloga b = b

(aloga b )logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n = "(loga n) = "(logn)

Working with O-Ω-Θ notation	



Claim:  For any a, b>1   logan is Θ (logbn)	
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! 

f (n) =
n2, n even
n, n odd

" 
# 
$ 

% 
& 
' 

f(n) ≠ Θ(na) for any a.!
Fortunately, such 
nasty cases are rare!

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.!

Big-Theta, etc. not always “nice”	
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Insertion Sort:!
Ω(n2) (worst case)!
O(n)   (best case)!

A Possible Misunderstanding?	



We have looked at	


type of complexity analysis	



worst-, best-, average-case	



types of function bounds	


O, Ω, Θ	



These two considerations are independent of each 
other	



one can do any type of function bound with any type of 
complexity analysis - measuring different things with 
same yardstick	
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every exponential 
grows faster than 
every polynomial	



Asymptotic Bounds for Some 
Common Functions	



	


Exponentials.  ���
For all r > 1 ���
and all d > 0,  ���
nd = O(rn).	



n100	

1.01n	
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Polynomial time	



P:  Running time is O(nd) for some constant d 
independent of the input size n.	


Nice scaling property: there is a constant c s.t. 
doubling n, time increases only by a factor of c. ���
	

(E.g., c ~ 2d)	



Contrast with exponential: For any constant c, 
there is a d such that n → n+d increases time by a 
factor of more than c. 	



     (E.g., 2n vs 2n+1)	
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22n 
2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

polynomial vs exponential growth	
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Why It Matters	



not only get very big, but do 
so abruptly, which likely yields 
erratic performance on small  
instances	





Next year's computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a problem 
can I solve in the same time next year? 	
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Complexity Increase E.g. T=1012 

O(n) n0 → 2n0 1012 → 2  x 1012 

O(n2) n0 → √2 n0 106             → 1.4  x 106 

O(n3) n0 → 3√2 n0 104 → 1.25  x 104 

2n /10 n0 → n0+10 400 → 410 
2n n0 → n0 +1 40 → 41 

another view of poly vs exp	
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Domination	



f(n) is o(g(n)) iff  limn→∞ f(n)/g(n)=0	


that is g(n) dominates f(n) ���
	



If a ≤ b then na is O(nb) ���
	


If a < b then na is o(nb)	


	


Note: ���
if f(n) is Θ (g(n)) then it cannot be o(g(n))	
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! 

limn"#

n2

n3
= limn"#

1
n

= 0

! 

limn"#

n3

en
= limn"#

3n2

en
= limn"#

6n
en

= limn"#

6
en

= 0

Working with little-o	



n2 = o(n3) [Use algebra]:	


	


	


n3 = o(en)  [Use L’Hospital’s rule 3 times]: 	
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Summary	



Typical initial goal for algorithm analysis is to find a 	


reasonably tight 	

 	

 	

i.e., Θ if possible	



asymptotic 	

 	

 	

 	

i.e., O or Θ	


bound on 	

 	

 	

 	

usually upper bound	



worst case running time 	


as a function of problem size	



This is rarely the last word, but often helps separate 
good algorithms from blatantly poor ones - so you 
can concentrate on the good ones!	





why “polynomial”?	



Point is not that n2000 is a nice time bound, or that the 
differences among n and 2n and n2 are negligible.	



Rather, simple theoretical tools may not easily capture 
such differences, whereas exponentials are qualitatively 
different from polynomials, so more amenable to 
theoretical analysis.	



“My problem is in P” is a starting point for a more detailed 
analysis	



“My problem is not in P” may suggest that you need to shift to 
a more tractable variant, or otherwise readjust expectations	



32	




