
1	

CSE 421: Intro Algorithms ���
���

2: Analysis	

Summer 2011	

Larry Ruzzo	

3	

Defining Efficiency	

“Runs fast on typical real problem instances”	

	

Pro: 	

sensible, bottom-line-oriented	

	

Con:	

moving target (diff computers, compilers, Moore’s law) 	

highly subjective (how fast is “fast”? What’s “typical”?)	

4	

Efficiency	

Our correct TSP algorithm was incredibly slow	

Basically slow no matter what computer you have	

We want a general theory of “efficiency” that is	

Simple	

Objective	

Relatively independent of changing technology	

But still predictive – “theoretically bad” algorithms
should be bad in practice and vice versa (usually)	

5	

Measuring efficiency	

Time ≈ # of instructions executed in a simple
programming language	

only simple operations (+,*,-,=,if,call,…)	

each operation takes one time step	

each memory access takes one time step	

no fancy stuff (add these two matrices, copy this long
string,…) built in; write it/charge for it as above	

 No fixed bound on the memory size	

6	

We left out things but...	

Things we’ve dropped	

memory hierarchy	

disk, caches, registers have many orders of magnitude
differences in access time	

not all instructions take the same time in practice (+, ÷)	

different computers have different primitive instructions	

However, 	

the “RAM” model is useful for designing algorithms and
measuring their efficiency	

one can usually tune implementations so that the
hierarchy, etc., is not a huge factor	

7	

T!

n!

Complexity ���
analysis	

Problem size n	

Best-case complexity: min # steps algorithm
takes on any input of size n	

Average-case complexity: avg # steps algorithm
takes on inputs of size n	

Worst-case complexity: max # steps algorithm
takes on any input of size n	

	

8	

Pros and cons:	

Best-case	

- unrealistic oversell	

Average-case	

- over what probability distribution? (different people

may have different “average” problems)	

- analysis often hard	

Worst-case	

+ a fast algorithm has a comforting guarantee	

- may be too pessimistic	

	

9	

Why Worst-Case Analysis?	

Appropriate for time-critical applications 	

E.g. avionics, nuclear reactors	

Unlike Average-Case, no debate about what the
right definition is	

If worst ≫ average, then (a) alg is doing something pretty
subtle, & (b) are hard instances really that rare?	

Analysis often easier	

Result is often representative of “typical” problem
instances	

Of course there are exceptions…	

10	

General Goals	

Characterize growth rate of (worst-case) run time as a
function of problem size, up to a constant factor	

Why not try to be more precise?	

Technological variations (computer, compiler, OS, …)
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford to do it today,
how much longer will it take when my business problems
are twice as large? (E.g., today: cn2, next year: c(2n)2 =
4cn2 : 4 x longer.)	

11	

Complexity	

The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes on
problems of size n, with each problem size n.	

	

Mathematically,	

T: N+ → R+	

I.e., T is a function that maps positive integers (problem
sizes) to positive real numbers (number of steps).	

12	

Problem size !

Ti
m

e!

T(n)!

Complexity	

13	

Problem size !

Ti
m

e!

T(n)!

Complexity	

n log2n!

2n log2n!

14	

O-notation, etc.	

Given two functions f and g:N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	

 f(n) is eventually always ≤ c g(n)	

	

f(n) is Ω (g(n)) iff there is a constant c>0 so that 	

	

 f(n) is eventually always ≥ c g(n) 	

	

f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that ���
	

 	

 	

eventually always c1g(n) ≤ f(n) ≤ c2g(n)	

15	

Examples	

10n2-16n+100 is O(n2) 	

also O(n3)	

10n2-16n+100 ≤ 11n2 for all n ≥ 10	

10n2-16n+100 is Ω (n2) 	

also Ω (n)	

10n2-16n+100 ≥ 9n2 for all n ≥16	

Therefore also 10n2-16n+100 is Θ (n2)	

	

10n2-16n+100 is not O(n) also not Ω (n3)	

16	

Properties	

Transitivity.	

If f = O(g) and g = O(h) then f = O(h).	

If f = Ω(g) and g = Ω(h) then f = Ω(h). 	

If f = Θ(g) and g = Θ(h) then f = Θ(h).	

	

Additivity.	

If f = O(h) and g = O(h) then f + g = O(h). 	

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	

If f = Θ(h) and g = O(h) then f + g = Θ(h).	

17	

log grows slower than
every polynomial	

Asymptotic Bounds for Some
Common Functions	

Polynomials: ���
	

a0 + a1n + … + adnd is Θ(nd) if ad > 0���

	

Logarithms: ���
	

O(loga n) = O(logb n) for any constants a,b > 0���

	

Logarithms: ���
	

For all x > 0, log n = O(nx)	

18	

2 + 2 is 4 	

2n2 + 5 n is O(n3)	

2 + 2 = 4 	

2n2 + 5 n = O(n3)	

4 = 2 + 2 	

O(n3) = 2n2 + 5 n 	

	

 	

 	

 	

	

All dogs are mammals 	

All mammals are dogs	

Bottom line:	

OK to put big-O in R.H.S. of equality, but not left. 	

[Better, but uncommon, notation: T(n) ∈ O(f(n)).]	

“One-Way Equalities”	

19	

Working with O-Ω-Θ notation	

Claim: For any a, and any b>0, (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b 	

for n ≥ |a|���
	

= 2bnb ���
	

= cnb 	

 	

for c = 2b ���

so (n+a)b is O(nb) ���
	

(n+a)b ≥ (n/2)b 	

for n ≥ 2|a| (even if a < 0)
	

= 2-bnb ���
	

= c’n 	

 	

for c’ = 2-b ���

so (n+a)b is Ω (nb)	

20	

!

loga b = x means ax = b

aloga b = b

(aloga b)logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n = "(loga n) = "(logn)

Working with O-Ω-Θ notation	

Claim: For any a, b>1 logan is Θ (logbn)	

21	

!

f (n) =
n2, n even
n, n odd

"

$

%
&
'

f(n) ≠ Θ(na) for any a.!
Fortunately, such
nasty cases are rare!

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.!

Big-Theta, etc. not always “nice”	

22	

Insertion Sort:!
Ω(n2) (worst case)!
O(n) (best case)!

A Possible Misunderstanding?	

We have looked at	

type of complexity analysis	

worst-, best-, average-case	

types of function bounds	

O, Ω, Θ	

These two considerations are independent of each
other	

one can do any type of function bound with any type of
complexity analysis - measuring different things with
same yardstick	

	

23	

every exponential
grows faster than
every polynomial	

Asymptotic Bounds for Some
Common Functions	

	

Exponentials. ���
For all r > 1 ���
and all d > 0, ���
nd = O(rn).	

n100	

1.01n	

24	

Polynomial time	

P: Running time is O(nd) for some constant d
independent of the input size n.	

Nice scaling property: there is a constant c s.t.
doubling n, time increases only by a factor of c. ���
	

(E.g., c ~ 2d)	

Contrast with exponential: For any constant c,
there is a d such that n → n+d increases time by a
factor of more than c. 	

 (E.g., 2n vs 2n+1)	

25	

22n
2n/10

1000n2

22n!

2n/10!

1000n2!

polynomial vs exponential growth	

 	

26	

Why It Matters	

not only get very big, but do
so abruptly, which likely yields
erratic performance on small
instances	

Next year's computer will be 2x faster. If I can
solve problem of size n0 today, how large a problem
can I solve in the same time next year? 	

	

27	

Complexity Increase E.g. T=1012

O(n) n0 → 2n0 1012 → 2 x 1012

O(n2) n0 → √2 n0 106 → 1.4 x 106

O(n3) n0 → 3√2 n0 104 → 1.25 x 104

2n /10 n0 → n0+10 400 → 410
2n n0 → n0 +1 40 → 41

another view of poly vs exp	

28	

Domination	

f(n) is o(g(n)) iff limn→∞ f(n)/g(n)=0	

that is g(n) dominates f(n) ���
	

If a ≤ b then na is O(nb) ���
	

If a < b then na is o(nb)	

	

Note: ���
if f(n) is Θ (g(n)) then it cannot be o(g(n))	

29	

!

limn"#

n2

n3
= limn"#

1
n

= 0

!

limn"#

n3

en
= limn"#

3n2

en
= limn"#

6n
en

= limn"#

6
en

= 0

Working with little-o	

n2 = o(n3) [Use algebra]:	

	

	

n3 = o(en) [Use L’Hospital’s rule 3 times]: 	

	

30	

Summary	

Typical initial goal for algorithm analysis is to find a 	

reasonably tight 	

 	

 	

i.e., Θ if possible	

asymptotic 	

 	

 	

 	

i.e., O or Θ	

bound on 	

 	

 	

 	

usually upper bound	

worst case running time 	

as a function of problem size	

This is rarely the last word, but often helps separate
good algorithms from blatantly poor ones - so you
can concentrate on the good ones!	

why “polynomial”?	

Point is not that n2000 is a nice time bound, or that the
differences among n and 2n and n2 are negligible.	

Rather, simple theoretical tools may not easily capture
such differences, whereas exponentials are qualitatively
different from polynomials, so more amenable to
theoretical analysis.	

“My problem is in P” is a starting point for a more detailed
analysis	

“My problem is not in P” may suggest that you need to shift to
a more tractable variant, or otherwise readjust expectations	

32	

