
1	


CSE 421:  Intro Algorithms ���
���

2: Analysis	


Summer 2011	

Larry Ruzzo	




3	


Defining Efficiency	


“Runs fast on typical real problem instances”	

	

Pro: 	


sensible, bottom-line-oriented	


	


Con:	

moving target (diff computers, compilers, Moore’s law) 	


highly subjective (how fast is “fast”?  What’s “typical”?)	




4	


Efficiency	


Our correct TSP algorithm was incredibly slow	

Basically slow no matter what computer you have	

We want a general theory of “efficiency” that is	


Simple	

Objective	


Relatively independent of changing technology	

But still predictive – “theoretically bad” algorithms 
should be bad in practice and vice versa (usually)	




5	


Measuring efficiency	


Time ≈ # of instructions executed in a simple 
programming language	


only simple operations (+,*,-,=,if,call,…)	

each operation takes one time step	


each memory access takes one time step	

no fancy stuff (add these two matrices, copy this long 
string,…) built in; write it/charge for it as above	


 No fixed bound on the memory size	




6	


We left out things but...	


Things we’ve dropped	

memory hierarchy	


disk, caches, registers have many orders of magnitude 
differences in access time	


not all instructions take the same time in practice (+, ÷)	

different computers have different primitive instructions	


However, 	

the “RAM” model is useful for designing algorithms and 
measuring their efficiency	

one can usually tune implementations so that the 
hierarchy, etc., is not a huge factor	




7	


T!

n!

Complexity ���
analysis	


Problem size n	

Best-case complexity: min # steps algorithm 
takes on any input of size n	


Average-case complexity: avg # steps algorithm 
takes on inputs of size n	


Worst-case complexity: max # steps algorithm 
takes on any input of size n	


	




8	


Pros and cons:	


Best-case	

- unrealistic oversell	


Average-case	

- over what probability distribution?  (different people 

may have different “average” problems)	

- analysis often hard	


Worst-case	

+ a fast algorithm has a comforting guarantee	

-  may be too pessimistic	


	




9	


Why Worst-Case Analysis?	


Appropriate for time-critical applications 	

E.g. avionics, nuclear reactors	


Unlike Average-Case, no debate about what the 
right definition is	


If worst ≫ average, then (a) alg is doing something pretty 
subtle, & (b) are hard instances really that rare?	


Analysis often easier	

Result is often representative of “typical” problem 
instances	

Of course there are exceptions…	




10	


General Goals	


Characterize growth rate of (worst-case) run time as a 
function of problem size, up to a constant factor	

Why not try to be more precise?	


Technological variations (computer, compiler, OS, …) 
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford to do it today, 
how much longer will it take when my business problems 
are twice as large?  (E.g., today: cn2, next year: c(2n)2 = 
4cn2 : 4 x longer.)	




11	


Complexity	


The complexity of an algorithm associates a number 
T(n), the worst-case time the algorithm takes on 
problems of size n, with each problem size n.	

	


Mathematically,	

T: N+ → R+	


I.e., T is a function that maps positive integers (problem 
sizes) to positive real numbers (number of steps).	




12	

Problem size !

Ti
m

e!

T(n)!

Complexity	




13	

Problem size !

Ti
m

e!

T(n)!

Complexity	


n log2n!

2n log2n!



14	


O-notation, etc.	


Given two functions f and g:N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≤ c g(n)	


	


f(n) is Ω (g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≥ c g(n) 	


	


f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that ���
	
 	
 	
eventually always c1g(n) ≤ f(n) ≤ c2g(n)	




15	


Examples	


10n2-16n+100 is O(n2)  	
also O(n3)	

10n2-16n+100 ≤ 11n2 for all n ≥ 10	


10n2-16n+100 is Ω (n2)  	
also Ω (n)	

10n2-16n+100 ≥ 9n2 for all n ≥16	


Therefore also 10n2-16n+100 is Θ (n2)	

	


10n2-16n+100 is not O(n) also not Ω (n3)	




16	


Properties	


Transitivity.	

If f = O(g) and g = O(h) then f = O(h).	

If f = Ω(g) and g = Ω(h) then f = Ω(h). 	

If f = Θ(g) and g = Θ(h) then f = Θ(h).	


	

Additivity.	


If f = O(h) and g = O(h) then f + g = O(h). 	

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	

If f = Θ(h) and g = O(h) then f + g = Θ(h).	




17	


log grows slower than 
every polynomial	


Asymptotic Bounds for Some 
Common Functions	


Polynomials:  ���
	
a0 + a1n + … + adnd  is Θ(nd) if ad > 0���

	

Logarithms:  ���
	
O(loga n) = O(logb n) for any constants a,b > 0���

	


Logarithms:  ���
	
For all x > 0,  log n = O(nx)	




18	


2 + 2 is 4 	
2n2 + 5 n is O(n3)	

2 + 2 = 4 	
2n2 + 5 n = O(n3)	

4 = 2 + 2 	
O(n3) = 2n2 + 5 n 	


	
 	
 	
        	
	

All dogs are mammals 	
All mammals are dogs	


Bottom line:	

OK to put big-O in R.H.S. of equality, but not left.  	


[Better, but uncommon, notation:  T(n) ∈ O(f(n)).]	


“One-Way Equalities”	




19	


Working with O-Ω-Θ notation	


Claim:  For any a, and any b>0,  (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b  	
for n ≥ |a|���
	
= 2bnb ���
	
= cnb 	
 	
for c = 2b ���

so (n+a)b is O(nb) ���
	


(n+a)b ≥ (n/2)b 	
for n ≥ 2|a| (even if a < 0)                              
	
= 2-bnb ���
	
= c’n 	
 	
for c’ = 2-b ���

so (n+a)b is Ω (nb)	




20	


! 

loga b = x means ax = b

aloga b = b

(aloga b )logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n ="(loga n) ="(logn)

Working with O-Ω-Θ notation	


Claim:  For any a, b>1   logan is Θ (logbn)	




21	


! 

f (n) =
n2, n even
n, n odd

" 
# 
$ 

% 
& 
' 

f(n) ≠ Θ(na) for any a.!
Fortunately, such 
nasty cases are rare!

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.!

Big-Theta, etc. not always “nice”	




22	


Insertion Sort:!
Ω(n2) (worst case)!
O(n)   (best case)!

A Possible Misunderstanding?	


We have looked at	

type of complexity analysis	


worst-, best-, average-case	


types of function bounds	

O, Ω, Θ	


These two considerations are independent of each 
other	


one can do any type of function bound with any type of 
complexity analysis - measuring different things with 
same yardstick	

	




23	


every exponential 
grows faster than 
every polynomial	


Asymptotic Bounds for Some 
Common Functions	


	

Exponentials.  ���
For all r > 1 ���
and all d > 0,  ���
nd = O(rn).	


n100	
1.01n	




24	


Polynomial time	


P:  Running time is O(nd) for some constant d 
independent of the input size n.	

Nice scaling property: there is a constant c s.t. 
doubling n, time increases only by a factor of c. ���
	
(E.g., c ~ 2d)	


Contrast with exponential: For any constant c, 
there is a d such that n → n+d increases time by a 
factor of more than c. 	


     (E.g., 2n vs 2n+1)	




25	


22n 
2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

polynomial vs exponential growth	


 	




26	


Why It Matters	


not only get very big, but do 
so abruptly, which likely yields 
erratic performance on small  
instances	




Next year's computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a problem 
can I solve in the same time next year? 	

	


27	


Complexity Increase E.g. T=1012 

O(n) n0 → 2n0 1012 → 2  x 1012 

O(n2) n0 → √2 n0 106             → 1.4  x 106 

O(n3) n0 → 3√2 n0 104 → 1.25  x 104 

2n /10 n0 → n0+10 400 → 410 
2n n0 → n0 +1 40 → 41 

another view of poly vs exp	




28	


Domination	


f(n) is o(g(n)) iff  limn→∞ f(n)/g(n)=0	

that is g(n) dominates f(n) ���
	


If a ≤ b then na is O(nb) ���
	

If a < b then na is o(nb)	

	

Note: ���
if f(n) is Θ (g(n)) then it cannot be o(g(n))	




29	


! 

limn"#

n2

n3
= limn"#

1
n

= 0

! 

limn"#

n3

en
= limn"#

3n2

en
= limn"#

6n
en

= limn"#

6
en

= 0

Working with little-o	


n2 = o(n3) [Use algebra]:	

	

	

n3 = o(en)  [Use L’Hospital’s rule 3 times]: 	

	




30	


Summary	


Typical initial goal for algorithm analysis is to find a 	

reasonably tight 	
 	
 	
i.e., Θ if possible	


asymptotic 	
 	
 	
 	
i.e., O or Θ	

bound on 	
 	
 	
 	
usually upper bound	


worst case running time 	

as a function of problem size	


This is rarely the last word, but often helps separate 
good algorithms from blatantly poor ones - so you 
can concentrate on the good ones!	




why “polynomial”?	


Point is not that n2000 is a nice time bound, or that the 
differences among n and 2n and n2 are negligible.	


Rather, simple theoretical tools may not easily capture 
such differences, whereas exponentials are qualitatively 
different from polynomials, so more amenable to 
theoretical analysis.	


“My problem is in P” is a starting point for a more detailed 
analysis	


“My problem is not in P” may suggest that you need to shift to 
a more tractable variant, or otherwise readjust expectations	


32	



