
1	

CSE 421: Introduction to Algorithms ���
���

I: Overview	

Summer 2011	

Larry Ruzzo	

	

 CSE 421, Su '11: Introduction to Algorithms
 CSE Home About Us Search Contact Info

Administrative
 FAQ
 Schedule & Reading

Course Email/BBoard
 Subscription Options
 Class List Archive
 GoPost BBoard

Lecture Notes
 1: Overview & Example

 Lecture: Tho 101 (schematic) MW 10:50- 12:20

Office Hours Location Phone

Instructor: Larry Ruzzo, ruzzo cs M 1:00- 2:00 CSE 554 206-543-
6298

TA: Kevin Zatloukal,
kevinz cs W 1:00- 2:00 CSE ???

Course Email: cse421a_su11@uw.edu. Announcements and general interest
Q&A about homework, lectures, etc. The instructor and TA are subscribed to
this list. Enrolled students are as well, but probably should change their default
subscription options. Messages are automatically archived.

Discussion Board: Also feel free to use Catalyst GoPost to discuss homework,
etc.

Catalog Description: Techniques for design of efficient algorithms. Methods
for showing lower bounds on computational complexity. Particular algorithms
for sorting, searching, set manipulation, arithmetic, graph problems, pattern
matching.

Prerequisites: either CSE 312 or CSE 322; either CSE 326 or CSE 332.
Credits: 3
Grading: Homework, Midterm, Final. Homework will be a mix of paper &

pencil exercises and programing. Overall weights 55%, 15%, 30%, roughly.
Extra Credit: Assignments may include "extra credit" sections. These will enrich

your understanding of the material, but at a low points per hour ratio. Do them
for the glory, not the points, and don't start extra credit until the basics are
complete.

Textbook: Algorithm Design by Jon Kleinberg and Eva Tardos. Addison Wesley,
2006. (Available from U Book Store, Amazon, etc.)

Portions of the CSE 421 Web may be reprinted or adapted for academic nonprofit purposes, providing
the source is accurately quoted and duly credited. The CSE 421 Web: © 1993-2011, Department of
Computer Science and Engineering, University of Washington.

Computer Science & Engineering
University of Washington

Box 352350
Seattle, WA 98195-2350

(206) 543-1695 voice, (206) 543-2969 FAX

2	

http://www.cs.washington.edu/421	

3	

What you have to do	

Homework 	
(~55% of grade)	

Programming	

Some small projects	

Written homework assignments	

English exposition and pseudo-code	

Analysis and argument as well as design	

Midterm / Final Exam 	
(~15% / 30%)	

Late Policy: 	

Papers and/or electronic turnins are due at the start of
class on the due date. 	

4	

Textbook	

Algorithm Design by
Jon Kleinberg and
Eva Tardos. Addison
Wesley, 2006.	

5	

What the course is about	

Design of Algorithms	

design methods	

common or important types of problems	

analysis of algorithms - efficiency	

correctness proofs	

6	

What the course is about	

Complexity, NP-completeness and intractability	

solving problems in principle is not enough	

algorithms must be efficient	

some problems have no efficient solution	

NP-complete problems	

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily	

7	

Very Rough Division of Time	

Algorithms (7 weeks)	

Analysis of Algorithms	

Basic Algorithmic Design Techniques	

Graph Algorithms	

Complexity & NP-completeness (2 weeks)	

	

Check online ���
schedule page for ���
(evolving) details 	
	

8	

Complexity Example	

Cryptography (e.g. RSA, SSL in browsers)	

Secret: p,q prime, say 512 bits each	

Public: n which equals p x q, 1024 bits	

In principle 	

there is an algorithm that given n will find p and q: ���
try all 2512 > 1.3x10154 possible p’s: kinda slow…	

In practice 	

no fast algorithm known for this problem (on non-quantum computers)	

security of RSA depends on this fact	

(“quantum computing”: strongly driven by possibility of changing this)	

	

9	

Algorithms versus Machines	

We all know about Moore’s Law and the
exponential improvements in hardware...	

	

Ex: sparse linear equations over 25 years	

	

10 orders of magnitude improvement!	

10	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

1960	
 1970	
 1980	
 1990	
 2000	

Source: Sandia, via M. Schultz!

Algorithms or Hardware?	

25 years
progress
solving sparse
linear
systems	

	

hardware: 4
orders of
magnitude	

	

11	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

Sparse G.E.	

Gauss-Seidel	

SOR	

CG	

1960	
 1970	
 1980	
 1990	
 2000	

Source: Sandia, via M. Schultz!

Algorithms or Hardware?	

25 years
progress
solving
sparse linear
systems	

	

hardware: 4
orders of
magnitude	

	

software: 6	

orders of
magnitude	

12	

Source: T.Quinn!

Algorithms or Hardware? 	

The ���
N-Body ���
Problem:	

	

in 30 years���
 107 hardware���
 1010 software	

13	

Algorithm: definition	

Procedure to accomplish a task or solve a
well-specified problem	

Well-specified: know what all possible inputs
look like and what output looks like given them	

“accomplish” via simple, well-defined steps	

Ex: sorting names (via comparison)	

Ex: checking for primality (via +, -, *, /, ≤)	

14	

Algorithms: a sample problem	

Printed circuit-board company has a robot
arm that solders components to the board	

Time: proportional to total distance the arm
must move from initial rest position around
the board and back to the initial position	

For each board design, find best order to do
the soldering	

15	

Printed Circuit Board	

16	

Printed Circuit Board	

17	

A Well-defined Problem	

Input: Given a set S of n points in the plane	

Output: The shortest cycle tour that visits
each point in the set S.	

	

Better known as “TSP”	

	

How might you solve it?	

18	

heuristic:���
A rule of thumb,
simplification, or educated
guess that reduces or limits
the search for solutions in���
domains that are difficult and
poorly understood. May be
good, but usually not
guaranteed to give the best
or fastest solution.	

Nearest ���
Neighbor ���
Heuristic	
	

	

Start at some point p0	

Walk first to its ���
nearest neighbor p1	

Repeatedly walk to the nearest unvisited neighbor
p2, then p3,… until all points have been visited	

Then walk back to p0	

19	

Nearest Neighbor Heuristic	

p0!
p1!

p6!

20	

An input where it works badly	

p0!

.9!1! 2!4! 8!16!

length ~ 84	

21	

An input where it works badly	

p0!

.9!1! 2!4! 8!16!

optimal soln for this example���
length = 63.8	

22	
p0!

.9!1! 2!4! 8!16!

Revised idea - Closest pairs first	

Repeatedly join the closest pair of points	

(s.t. result can still be part of a ���
single loop in the end. I.e., join ���
endpoints, but not points in middle, ���
of path segments already created.)	

How does this work on our bad example?	

?	

23	

Another bad example	

1!

1.5! 1.5!

 !

24	

Another bad example	

1!

1.5! 1.5!

6+√10 = 9.16 !
!
!
vs !
!
!
!
8!

25	

Something that works	

	

	

“Brute Force Search”:	

For each of the n! = n(n-1)(n-2)…1 orderings of the
points, check the length of the cycle you get	

Keep the best one	

	

	

	

26	

Two Notes	

The two incorrect algorithms were greedy	

Often very natural & tempting ideas	

They make choices that look great “locally” (and never
reconsider them)	

When greed works, the algorithms are typically efficient	

BUT: often does not work - you get boxed in	

Our correct alg avoids this, but is incredibly slow	

20! is so large that checking one billion orderings per
second would take 2.4 billion seconds (around 70 years!)	

And growing: n! ~ √2 π n • (n/e)n ~ 2O(n log n)	

	

27	

Something that “works” (differently)	

1. Find Min Spanning Tree	

28	

Something that “works” (differently)	

2. Walk around it	

29	

3. Take shortcuts (instead of revisiting)	

Something that “works” (differently)	

30	

Something that “works” (differently):
Guaranteed Approximation	

Does it seem wacky?	

Maybe, but it’s always within a factor of 2 of
the best tour!	

deleting one edge from best tour gives a
spanning tree, so Min spanning tree < best tour	

best tour ≤ wacky tour ≤ 2 * MST < 2 * best	

triangle inequality	

31	

The Morals of the Story	

Algorithms are important	

 Many performance gains outstrip Moore’s law	

Simple problems can be hard 	

Factoring, TSP	

Simple ideas don’t always work 	

Nearest neighbor, closest pair heuristics	

Simple algorithms can be very slow	

Brute-force factoring, TSP	

Changing your objective can be good	

Guaranteed approximation for TSP	

And: for some problems, even the best algorithms are slow	

	

