Chapter 6

Dynamic Programming

PEARSON
Addison
Wesley

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
. Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
. Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

. Bioinformatics.

« Control theory.

. Information theory.

. Operations research.

. Computer science: theory, graphics, AL, systems,

Some famous dynamic programming algorithms.
. Viterbi for hidden Markov models.
« Unix diff for comparing two files.
. Smith-Waterman for sequence alignment.
. Bellman-Ford for shortest path routing in networks.
« Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at S} finishes at fJ-, and has weight or value vj.
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
. Consider jobs in ascending order of finish time.

. Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 | : : : : b

weight = 1 a
Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2) = 0.

Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., .

. Case 1: OPT selects job j.
- can't use incompatible jobs { p(j) + 1, p(j)+ 2, .., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j)

optimal substructure

/
. Case 2: OPT does not select job j.

- must include optimal solution o problem consisting of remaining
compatible jobs 1, 2, ..., j-1

Jo if j=0
OPT(J)_{max{ v, + OPT(p()), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input :n,s 4,8, Foof g vy,
Sort jobs by finish times so that f sf,s 0 s
Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
if (=0)
return 0
else
return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

p(1) =0, p(j) = j-2

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

Input :n,s 4,8, fof g vy

Sort jobs by finish times so that f sfrs .0 sf.
Compute p(1), p(2), -.., p(n)

for j=1ton
MI[j] = empty «— global array
M[] =0

M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(w ; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return MIj]

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(Q: O(n) after sorting by start time.

. M Conpute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M j]
- (ii) fills in one new entry M j] and makes two recursive calls
« Progress measure ® = # nonempty entries of M].
- initially ® = 0, throughout ® <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

. Overadll running time of M Conput e- Opt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

Automated Memoization

Automated memoization. Many functional programming languages
(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

(defun F (n) static int F(int n) {
(if if (n <= 1) return n;
(<=n1) else return F(n-1) + F(n-2);

n }
(*(F(n1)(F(n2))

Lisp (efficient)

Java (exponential)

F(40)
FE)— T—F@38)

Fee” Fa7) Fan” Fae)
N
F(37) F(36) F(36) F(35) F(36) F(35) F(35) F(34)
INCINCIN O IN O IN NN N

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {

it (j=0)
output nothing

else if (v; +Mlp@] > MI-1])
print j
Find-Solution(p(j))

else
Find-Solution(j-1)

. # of recursive calls<n = O(n).

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input :n,s 4,8, Fooof g vy,
Sort jobs by finish times so that f st 0 sf
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
M[0] =0

for j=1ton
M[] =max(v ; +Mp@)], M[j-1])

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
. Foundational problem in statistic and humerical analysis.
. Given n points in the plane: (xy,yq), (X2, ¥2) . - - .. (Xq, Yn)-
. Find aline y = ax + b that minimizes the sum of the squared error:

Solution. Calculus = min error is achieved when

as VTN @) W) LY ma%%
NS -(5x)? n

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
. Given n points in the plane (x4, y1), (X2, Y2) . - - .. (X, Yq) with
« Xp< X< ... < X, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and
parsimony? !

f

number of lines

goodness of fit

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
. Given n points in the plane (xq,yy), (X2, ¥2) .- ... (Xp, Yn) With
« Xp< X< .. < X, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
. Tradeoff function: E + c L, for some constant ¢ > 0.

Dynamic Programming: Multiway Choice

Notation.
- OPT(j) = minimum cost for points py, piy , ..., pj-
- e(i,j) =minimum sum of squares for points p;, pi,y , p;-

To compute OPT(j):
- Last segment uses points p;, p;.q, p; for some i.
. Cost =e(i, j) + c + OPT(i-1).

(o if j=0
OPT(j)= min { &(i,j) +c+OPT(i-1)} otherwise
J

<is

Segmented Least Squares: Algorithm

INPUT:n,p 4,....py, C

Segmented-Least-Squares() {

M[0] =0
for j=1ton
for i=1toj
compute the least square error e j for
the segmentp ,...,p j
for j=1ton

M[j] = min 15isj (€5 +c+Mi-1)

return ~ M[n]

. . can be improved to O(n?) by pre-computing various statistics
Running time. O(n3).

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
. Given nobjects and a "knapsack."
. Itemiweighs w; > O kilograms and has value v;> 0.
. Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: (3,4 has value 40.

1 1 1
W= 11 2 6 2
3 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy hot optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1: OPT does not select item i.
- OPT selects best of {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i, we don't
even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.

- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

. Case 2: OPT selects item i.

- new weight limit = w - w;
- OPT selects best of {1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT (i,w) =1 OPT (i -Lw) if w>w
max{OPT (i —1,w) v, +OPT (i —Lw-w)} otherwise

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input :n, W 4, Wy Vi,V

for w=0toW
M[O, w] = 0

for i=1ton
for w=1toW
it (w; >w)
M[i, w] = M[i-1, w]
else
MIi, w] = max {M[i-1, w], v i tMO-1L,ww T}

return ~ M[n, W]

n+1

Knapsack Algorithm

W+1

[ol1]2lafals]6l7]a]o]w0]u]
B o o o 0o o 0 o 0 0o 0 o

)

(1) B 111111
12y M ¢ 7 7 7 7 7 7 7 7 7
1,23y o 1 6 7 7 @1y 24 25 25 25 25
{1,2,34) 0 1 6 7 7 18 22 24 28 29 29 [J0)
{1,2,345) 0 1 6 7 7 18 22 28 29 34 34 40
1 1
OPT: {4,3)} g

1
value = 22 + 18 = 40 2 2
w=11 3 18 5
4 22 6
5 28 7

Knapsack Problem: Running Time

Running time. ©(h W).
. Not polynomial in input size!
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String B = b;b,...b, over alphabet { A, C, 6, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

C— A
Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGﬁéA \A
AS /
A---U 6—c¢
[/ \
C---6—U—A—A G
/ ' ' ' I
6 ' ' '
U I A—U—U A
7 N\ I N~
A C—G6—C—U
] ' ' ' G
] A
4 6—C—6—A—G--C
N 7 |
G
A--U
|
G

complementary base pairs: A-U, C-G

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b;) } that satisfy:
. [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-G, or 6-C.
« [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b;, b) O S, theni«<j-4.
. [Non-crossing.] If (b;, bJ-) and (by, b)) are two pairs in S, then we
cannot have i<k<j<I.

Free energy. Usual hypothesis is that an RNA molecule will form the
secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = bb,...b,, find a secondary structure S
that maximizes the number of base pairs.

RNA Secondary Structure: Examples

Examples.
6—6 /G\ 6—6
/ AN 6 6 / AN
4 V] 4 V]
\ s \ 7/ N s
cC---6 C---6 C\ ’U
I I | <1
A---U A---U A" 6
| | | | | |
U---A U---A U---A
base pair
AUGUGGCCAU AUGGGG CAU AGUUGGCCAU
— <4
ok sharp turn crossing

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring bjb,...b;.

match b, and by,

Difficulty. Results in two sub-problems.
. Finding secondary structure in: bjb,...b, ;. — OPT(rD)
. Finding secondary structure in: b,,;b,,5...b, ;. < need more sub-problems

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bby,...b;.

« Casel Ifizj-4
- OPT(i, j) = O by nho-sharp turns condition.

- Case 2. Base b is not involved in a pair.
- OPT(i, j) = OPT(, j-1)

- Case 3. Base b; pairs with b, for some i<t<j-4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1+ max, { OPT(i, t-1) + OPT(++1, j-1) }
I

‘take max over t such that i<t < j-4 and
b, and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

RNA(b,,....b) {

4[ofofo
for k=5,6,...,n-1
for i=1,2, .., nk S 2o
j=i+k L 2o
Compute M, j] 1
6 7 8 9
) return M[1, n] using recurrence i

Running time. O(n3).

Dynamic Programming Summary

Recipe.
. Characterize structure of problem.
. Recursively define value of optimal solution.
. Compute value of optimal solution.
. Construct optimal solution from computed information.

Dynamic programming techniques.
. Binary choice: weighted interval scheduling. o
. . Viterbi algcrlthm for HMM‘alsq uses
« Multi-way choice: segmented least squares. «— D fo optimize a maximum likelinood
tradeoff between parsimony and accuracy
. Adding a new variable: knapsack.
. Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

6.6 Sequence Alignment

String Similarity

How similar are two strings?
= Oocurrance

o

- [l - oA
- - 1 - Bna -

5 mismatches, 1 gap

= occurrence

S

oc.ur‘runce

0O C CUuUUr rganc e

1 mismatch, 1 gap

OC.UPP.O'\CE

occur‘r‘a.nce

0 mismatches, 3 gaps

Edit Distance

Applications.

. Basis for Unix diff.

« Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
- Gap penalty &; mismatch penalty o,
. Cost = sum of gap and mismatch penalties.

CCTACT .CTGACCTACT
C.CTACT CCTGAC.TACT

Oyc+ Ogr+ Upgt 20ca 20+ Qcy

40

Sequence Alignment

Goal: Given two strings X = x; X, ... X and Y =y;y, ...y, find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i <i', but j>j'.

ws(M) = Ya,, + X 5+ X0

(x,y;))OM i:x unmatched j:y; unmatched
mismatch gap
X| X; X3 X4 Xs Xg
Ex: CTACCGvs. TACATG, . . e

Sol: M = X,-Yq, X3-Y5, X4-Y3, X5-Ya, X¢-Ye-
27Y1 X3 Y2, X473, X57Y4, X6~ Ye .T A CT G
vi Y3 Yo Y5 Ve

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; x, ... x;and y; y, ...y
. Case 1: OPT matches x;-y;.

- pay mismatch for x;-y; + min cost of aligning two strings

Xy Xz ... Xpandyyya ... Yig

. Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning x; X, . .. x;yandy;y; ... y;
- Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; X, ... x;and y; o ... ¥4

io if i=0
ayy, +OPT(i-1 j-1)
OPT(i, j)=9 min { 0+OPT(i-1, j) otherwise
&+O0PT(i, j-1)
io if j=0

42

Sequence Alignment: Algorithm

Sequence-Alignment(m, n, X XoeX Y 1Y2Y o O a){
for i=0tom
M[O, i] =i 5
for j=0ton
M[j, 0] = 3
for i=1tom

for j=1ton
M, j] = min(aflxy;1+M[i-1,-1],
3 + M[i-1, j],
3 + MIi, j-1])
return M[m, n]

Analysis. ©(mn) time and space.
English words or sentences: m, n < 10.
Computational biology: m = n =100,000. 10 billions ops OK, but 106B array?

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, *) from OPT(i-1, -).
. No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.
. Clever combination of divide-and-conquer and dynamic programming.
. Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.
. Let £(i, j) be shortest path from (0,0) to (i, j).
. Observation: f(i, j) = OPT(, j).

€ Y1 Y2 Y3 Ya Ys Yo

- @

X

XY

Xz

. ®

46

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Can compute f (-, j) for any j in O(mn) time and O(m + n) space.

€ Y1 Yz Y3 Ya Ys Yo

X f—

Xz

. ®

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

€ Y1 Y2 Y3 Ya Ys Ye

- @

X

Xz

% @

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(*, j) for any j in O(mn) time and O(m + n) space.

3 Y1 Yz Ys Ya Ys Yo

: @
X
Xz

X3

Moo

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i,)+ 9(i,).

€ Y1 Y2 Y3 Ya Ys Yo

X

Xz

N\

. —@

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, O) fo (m, n) uses (q, n/2).

€ Y1 Yz Y3 Ya Ys Yo

X

Xz

. —@

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
- Align x, and y,,,.
Conquer: recursively compute optimal alignment in each piece.

€ Y1 Y2 Y3 Ya Ys Ye

- @
4 ®

Xz

. ®

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T(m,n) € 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
. O(mn) time to compute (-, n/2) and g (+, n/2) and find index q.
. T(q,n/2) + T(m - g, n/2) time for two recursive calls.
. Choose constant ¢ so that:

T(m 2) < cm
T(2, n) < cn
T(m, n) < cmn+T(q, n/2)+ T(m-qg, n/2)

. Basecasesim=2orn=2.
. Inductive hypothesis: T(m, n)< 2cmn.

< T(g,n/2)+T(m-g,n/2)+cmn
< 2cqgn/2+2c(m-g)n/2+cmn

= cgn+cmn-cgn+cm
= 2cmn

1 8 2
2 9 2
W=10 3 11 3
4 15 5
5 20 6
w
0|1 3 6| 7 10
0 olofolo oo 0
{1} 0
(1,2} 0
{1,2,3} 0
{1,2,3,4} | 0
{1,2,3,45}| 0

