
1

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some

local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve

each sub-problem independently, and combine solution to sub-problems

to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping

sub-problems, and build up solutions to larger and larger sub-problems.

3

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in

the 1950s.

Etymology.

� Dynamic programming = planning over time.

� Secretary of Defense was hostile to mathematical research.

� Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"

– "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

4

Dynamic Programming Applications

Areas.

� Bioinformatics.

� Control theory.

� Information theory.

� Operations research.

� Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.

� Viterbi for hidden Markov models.

� Unix diff for comparing two files.

� Smith-Waterman for sequence alignment.

� Bellman-Ford for shortest path routing in networks.

� Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.

� Job j starts at sj, finishes at fj, and has weight or value vj .

� Two jobs compatible if they don't overlap.

� Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

� Consider jobs in ascending order of finish time.

� Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

� Case 1: OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

� Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

OPT(j) =

0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise





optimal substructure

10

Input : n, s 1,…,s n , f 1,…,f n , v1,…,v n

Sort jobs by finish times so that f 1 ≤≤≤≤ f 2 ≤≤≤≤ ... ≤≤≤≤ f n.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(v j + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

12

Input : n, s 1,…,s n , f 1,…,f n , v1,…,v n

Sort jobs by finish times so that f 1 ≤≤≤≤ f 2 ≤≤≤≤ ... ≤≤≤≤ f n.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[j] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(w j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as

needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

� Sort by finish time: O(n log n).

� Computing p(⋅) : O(n) after sorting by start time.

� M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

� Progress measure Φ = # nonempty entries of M[].

– initially Φ = 0, throughout Φ ≤ n.

– (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

� Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

14

Automated Memoization

Automated memoization. Many functional programming languages

(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

static int F(int n) {
if (n <= 1) return n;
else return F(n-1) + F(n-2);

}

(defun F (n)
(if

(<= n 1)
n
(+ (F (- n 1)) (F (- n 2)))))

Lisp (efficient)

Java (exponential)

15

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if

we want the solution itself?

A. Do some post-processing.

� # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (v j + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

16

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input : n, s 1,…,s n , f 1,…,f n , v1,…,v n

Sort jobs by finish times so that f 1 ≤≤≤≤ f 2 ≤≤≤≤ ... ≤≤≤≤ f n.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(v j + M[p(j)], M[j-1])
}

6.3 Segmented Least Squares

18

Segmented Least Squares

Least squares.

� Foundational problem in statistic and numerical analysis.

� Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).

� Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ⇒ min error is achieved when

SSE = (yi − axi − b)2

i=1

n
∑

a =

n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

19

Segmented Least Squares

Segmented least squares.

� Points lie roughly on a sequence of several line segments.

� Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

� x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

x

y

goodness of fit

number of lines

20

Segmented Least Squares

Segmented least squares.

� Points lie roughly on a sequence of several line segments.

� Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

� x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

� Tradeoff function: E + c L, for some constant c > 0.

x

y

21

Dynamic Programming: Multiway Choice

Notation.

� OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

� e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

� Last segment uses points pi, pi+1 , . . . , pj for some i.

� Cost = e(i, j) + c + OPT(i-1).

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise





 

22

Segmented Least Squares: Algorithm

Running time. O(n3).

� Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p 1,…,p N , c

Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n

for i = 1 to j
compute the least square error e ij for
the segment p i ,…, p j

for j = 1 to n
M[j] = min 1 ≤≤≤≤ i ≤≤≤≤ j (e ij + c + M[i-1])

return M[n]
}

can be improved to O(n2) by pre-computing various statistics

6.4 Knapsack Problem

24

Knapsack Problem

Knapsack problem.

� Given n objects and a "knapsack."

� Item i weighs wi > 0 kilograms and has value vi > 0.

� Knapsack has capacity of W kilograms.

� Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not optimal.

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

25

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

� Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 }

� Case 2: OPT selects item i.

– accepting item i does not immediately imply that we will have to

reject other items

– without knowing what other items were selected before i, we don't

even know if we have enough room for i

Conclusion. Need more sub-problems!

26

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

� Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w

� Case 2: OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

{ }







−−+−
>−

=
=

otherwise),1(),,1(max

 if),1(

0 if0

),(

ii

i

wwiOPTvwiOPT

wwwiOPT

i

wiOPT

27

Input : n, w 1,…,w N, v1,…,v N

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (w i > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], v i + M[i-1, w-w i]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

28

Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

29

Knapsack Problem: Running Time

Running time. Θ(n W).

� Not polynomial in input size!

� "Pseudo-polynomial."

� Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm

that produces a feasible solution that has value within 0.01% of

optimum. [Section 11.8]

6.5 RNA Secondary Structure

31

RNA Secondary Structure

RNA. String B = b1b2…bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back

and form base pairs with itself. This structure is essential for

understanding behavior of molecule.

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

32

RNA Secondary Structure

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:

� [Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.

� [No sharp turns.] The ends of each pair are separated by at least 4

intervening bases. If (bi, bj) ∈ S, then i < j - 4.

� [Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we

cannot have i < k < j < l.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.

Goal. Given an RNA molecule B = b1b2…bn, find a secondary structure S

that maximizes the number of base pairs.

approximate by number of base pairs

33

RNA Secondary Structure: Examples

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G

≤4

base pair

34

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring b1b2…bj.

Difficulty. Results in two sub-problems.

� Finding secondary structure in: b1b2…bt-1.

� Finding secondary structure in: bt+1bt+2…bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems

35

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary

structure of the substring bibi+1…bj.

� Case 1. If i ≥ j - 4.

– OPT(i, j) = 0 by no-sharp turns condition.

� Case 2. Base bj is not involved in a pair.

– OPT(i, j) = OPT(i, j-1)

� Case 3. Base bj pairs with bt for some i ≤ t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark. Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i ≤ t < j-4 and
bt and bj are Watson-Crick complements

36

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A. Do shortest intervals first.

Running time. O(n3).

RNA(b1,…,b n) {
for k = 5, 6, …, n-1

for i = 1, 2, …, n-k
j = i + k
Compute M[i, j]

return M[1, n]
}

using recurrence

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

37

Dynamic Programming Summary

Recipe.

� Characterize structure of problem.

� Recursively define value of optimal solution.

� Compute value of optimal solution.

� Construct optimal solution from computed information.

Dynamic programming techniques.

� Binary choice: weighted interval scheduling.

� Multi-way choice: segmented least squares.

� Adding a new variable: knapsack.

� Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

6.6 Sequence Alignment

39

String Similarity

How similar are two strings?
� ocurrance

� occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

40

Applications.

� Basis for Unix diff.

� Speech recognition.

� Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

� Gap penalty δ; mismatch penalty αpq.

� Cost = sum of gap and mismatch penalties.

2δ + αCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

αTC + αGT + αAG+ 2αCA

-

Edit Distance

41

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find

alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item

occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

cost(M) = αxi y j

(xi, y j) ∈ M

∑

mismatch
1 2 4 3 4

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
1 2 4 4 4 4 4 3 4 4 4 4 4

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

42

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

� Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

� Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

� Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT(i, j) =






 







jδ if i = 0

min

αxi y j
+ OPT(i −1, j −1)

δ + OPT(i −1, j)

δ + OPT(i, j −1)









otherwise

iδ if j = 0

43

Sequence Alignment: Algorithm

Analysis. Θ(mn) time and space.

English words or sentences: m, n ≤ 10.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x 1x2...x m, y 1y2...y n, δδδδ, αααα) {
for i = 0 to m

M[0, i] = i δδδδ
for j = 0 to n

M[j, 0] = j δδδδ

for i = 1 to m
for j = 1 to n

M[i, j] = min(αααα[x i, y j] + M[i-1, j-1],
δδδδ + M[i-1, j],
δδδδ + M[i, j-1])

return M[m, n]
}

6.7 Sequence Alignment in Linear Space

45

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

� Compute OPT(i, •) from OPT(i-1, •).

� No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and

O(mn) time.

� Clever combination of divide-and-conquer and dynamic programming.

� Inspired by idea of Savitch from complexity theory.

46

Edit distance graph.

� Let f(i, j) be shortest path from (0,0) to (i, j).

� Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

αxiy j

47

Edit distance graph.

� Let f(i, j) be shortest path from (0,0) to (i, j).

� Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j

48

Edit distance graph.

� Let g(i, j) be shortest path from (i, j) to (m, n).

� Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

αxiy j

49

Edit distance graph.

� Let g(i, j) be shortest path from (i, j) to (m, n).

� Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j

50

Observation 1. The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

51

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

n / 2

q

52

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

� Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

q

n / 2

m-n

53

Theorem. Let T(m, n) = max running time of algorithm on strings of

length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup

T (m, n) ≤ 2T (m, n /2) + O(mn) ⇒ T (m, n) = O(mn logn)

54

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

� O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.

� T(q, n/2) + T(m - q, n/2) time for two recursive calls.

� Choose constant c so that:

� Base cases: m = 2 or n = 2.

� Inductive hypothesis: T(m, n) ≤ 2cmn.

Sequence Alignment: Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

=
+−+=

+−+≤
+−+≤

T(m, 2) ≤ cm

T(2, n) ≤ cn

T(m, n) ≤ cmn + T(q, n /2) + T(m − q, n /2)

55

8

Value

11

15

20

2

Weight

3

5

9 2

6

Item

1

3

4

5

2

W = 10

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

W

