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Algorithmic Paradigms

Greed.  Build up a solution incrementally, myopically optimizing some 

local criterion.

Divide-and-conquer.  Break up a problem into two sub-problems, solve 

each sub-problem independently, and combine solution to sub-problems 

to form solution to original problem. 

Dynamic programming. Break up a problem into a series of overlapping 

sub-problems, and build up solutions to larger and larger sub-problems.
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Dynamic Programming History

Bellman.  Pioneered the systematic study of dynamic programming in 

the 1950s.

Etymology.

� Dynamic programming = planning over time.

� Secretary of Defense was hostile to mathematical research.

� Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"

– "something not even a Congressman could object to"

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.
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Dynamic Programming Applications

Areas. 

� Bioinformatics.

� Control theory.

� Information theory.

� Operations research.

� Computer science:  theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms. 

� Viterbi for hidden Markov models.

� Unix diff for comparing two files.

� Smith-Waterman for sequence alignment.

� Bellman-Ford for shortest path routing in networks.

� Cocke-Kasami-Younger for parsing context free grammars.



6.1  Weighted Interval Scheduling
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Weighted Interval Scheduling

Weighted interval scheduling problem.

� Job j starts at sj, finishes at fj, and has weight or value vj . 

� Two jobs compatible if they don't overlap.

� Goal:  find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.

� Consider jobs in ascending order of finish time.

� Add job to subset if it is compatible with previously chosen jobs.

Observation.  Greedy algorithm can fail spectacularly if arbitrary 

weights are allowed.
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  ≤ f2  ≤ . . . ≤ fn .

Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting 

of job requests 1, 2, ..., j.

� Case 1:  OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ...,  p(j)

� Case 2:  OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ...,  j-1

  
OPT( j) =

0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise

 
 
 

optimal substructure
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Input : n, s 1,…,s n , f 1,…,f n , v1,…,v n

Sort jobs by finish times so that f 1 ≤≤≤≤ f 2 ≤≤≤≤ ... ≤≤≤≤ f n.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(v j + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 

redundant sub-problems  ⇒ exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 

like Fibonacci sequence.
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Input : n, s 1,…,s n , f 1,…,f n , v1,…,v n

Sort jobs by finish times so that f 1 ≤≤≤≤ f 2 ≤≤≤≤ ... ≤≤≤≤ f n.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[j] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(w j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache; lookup as 

needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.

� Sort by finish time:  O(n log n).

� Computing p(⋅) :  O(n) after sorting by start time.

� M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

� Progress measure Φ = # nonempty entries of M[].

– initially Φ = 0,  throughout Φ ≤ n. 

– (ii) increases Φ by 1  ⇒ at most 2n recursive calls.

� Overall running time of M-Compute-Opt(n) is O(n).   ▪

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Automated Memoization

Automated memoization.  Many functional programming languages

(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

static int F(int n) {
if (n <= 1) return n;
else return F(n-1) + F(n-2);

} 

(defun F (n)
(if

(<= n 1)
n
(+ (F (- n 1)) (F (- n 2)))))

Lisp (efficient)

Java (exponential)
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.  What if 

we want the solution itself?

A.  Do some post-processing.

� # of recursive calls ≤ n  ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (v j + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input : n, s 1,…,s n , f 1,…,f n , v1,…,v n

Sort jobs by finish times so that f 1 ≤≤≤≤ f 2 ≤≤≤≤ ... ≤≤≤≤ f n.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(v j + M[p(j)], M[j-1])
}



6.3  Segmented Least Squares
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Segmented Least Squares

Least squares.

� Foundational problem in statistic and numerical analysis.

� Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).

� Find a line y = ax + b that minimizes the sum of the squared error: 

Solution.  Calculus  ⇒ min error is achieved when

  
SSE = ( yi − axi − b)2

i=1

n
∑

  
a =

n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y
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Segmented Least Squares

Segmented least squares.

� Points lie roughly on a sequence of several line segments.

� Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

� x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and 

parsimony?

x

y

goodness of fit

number of lines
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Segmented Least Squares

Segmented least squares.

� Points lie roughly on a sequence of several line segments.

� Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

� x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

� Tradeoff function:  E + c L, for some constant c > 0.

x

y
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Dynamic Programming:  Multiway Choice

Notation.

� OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

� e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

� Last segment uses points pi, pi+1 , . . . , pj for some i.

� Cost = e(i, j) + c + OPT(i-1).

  

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise

 
 
 

  
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Segmented Least Squares:  Algorithm

Running time.  O(n3).

� Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula.

INPUT: n, p 1,…,p N , c

Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n

for i = 1 to j
compute the least square error e ij for
the segment p i ,…, p j

for j = 1 to n
M[j] = min 1 ≤≤≤≤ i ≤≤≤≤ j (e ij + c + M[i-1])

return M[n]
}

can be improved to O(n2) by pre-computing various statistics

6.4  Knapsack Problem
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Knapsack Problem

Knapsack problem.

� Given n objects and a "knapsack."

� Item i weighs wi > 0 kilograms and has value vi > 0.

� Knapsack has capacity of W kilograms.

� Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35  ⇒ greedy not optimal.

1
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

� Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } 

� Case 2:  OPT selects item i.

– accepting item i does not immediately imply that we will have to

reject other items

– without knowing what other items were selected before i, we don't 

even know if we have enough room for i

Conclusion.  Need more sub-problems!
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Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

� Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

� Case 2:  OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

{ }







−−+−
>−

=
=

otherwise),1(),,1(max

  if),1(

0  if0

),(

ii

i

wwiOPTvwiOPT

wwwiOPT

i

wiOPT
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Input : n, w 1,…,w N, v1,…,v N

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (w i > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], v i + M[i-1, w-w i ]}

return M[n, W]

Knapsack Problem:  Bottom-Up

Knapsack.  Fill up an n-by-W array.
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Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0
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25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40
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Knapsack Problem:  Running Time

Running time.  Θ(n W).

� Not polynomial in input size!

� "Pseudo-polynomial."

� Decision version of Knapsack is NP-complete.  [Chapter 8]

Knapsack approximation algorithm.  There exists a polynomial algorithm 

that produces a feasible solution that has value within 0.01% of

optimum.  [Section 11.8]

6.5  RNA Secondary Structure
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RNA Secondary Structure

RNA.  String B = b1b2…bn over alphabet { A, C, G, U }.

Secondary structure.  RNA is single-stranded so it tends to loop back 

and form base pairs with itself. This structure is essential for

understanding behavior of molecule.

G
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CG
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U
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U

U

A
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C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs:  A-U, C-G
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RNA Secondary Structure

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:

� [Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.

� [No sharp turns.] The ends of each pair are separated by at least 4 

intervening bases.  If (bi, bj) ∈ S, then i < j - 4.

� [Non-crossing.] If (bi, bj)  and (bk, bl) are two pairs in S, then we 

cannot have i < k < j < l.

Free energy.  Usual hypothesis is that an RNA molecule will form the 

secondary structure with the optimum total free energy.

Goal.  Given an RNA molecule B = b1b2…bn, find a secondary structure S 

that maximizes the number of base pairs.

approximate by number of base pairs
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RNA Secondary Structure:  Examples

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G

≤4

base pair
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RNA Secondary Structure:  Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary 

structure of the substring  b1b2…bj.

Difficulty. Results in two sub-problems.

� Finding secondary structure in: b1b2…bt-1.

� Finding secondary structure in: bt+1bt+2…bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems

35

Dynamic Programming Over Intervals

Notation.  OPT(i, j) = maximum number of base pairs in a secondary 

structure of the substring  bibi+1…bj.

� Case 1.  If i ≥ j - 4.

– OPT(i, j) = 0 by no-sharp turns condition.

� Case 2.  Base bj is not involved in a pair.

– OPT(i, j) = OPT(i, j-1)

� Case 3.  Base bj pairs with bt for some i ≤ t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark.  Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i ≤ t < j-4 and
bt and bj are Watson-Crick complements
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Bottom Up Dynamic Programming Over Intervals

Q.  What order to solve the sub-problems?

A.  Do shortest intervals first.

Running time.  O(n3).

RNA(b1,…,b n) {
for k = 5, 6, …, n-1

for i = 1, 2, …, n-k
j = i + k
Compute M[i, j]

return M[1, n]
}

using recurrence

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j
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Dynamic Programming Summary

Recipe.

� Characterize structure of problem.

� Recursively define value of optimal solution.

� Compute value of optimal solution.

� Construct optimal solution from computed information.

Dynamic programming techniques.

� Binary choice:  weighted interval scheduling.

� Multi-way choice:  segmented least squares.

� Adding a new variable:  knapsack.

� Dynamic programming over intervals:  RNA secondary structure.

Top-down vs. bottom-up:  different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

6.6  Sequence Alignment
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String Similarity

How similar are two strings?
� ocurrance

� occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
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Applications.

� Basis for Unix diff.

� Speech recognition.

� Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

� Gap penalty δ; mismatch penalty αpq.

� Cost = sum of gap and mismatch penalties.

2δ + αCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

αTC + αGT + αAG+ 2αCA

-

Edit Distance
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 

alignment of minimum cost.

Def.  An alignment M is a set of ordered pairs xi-yj such that each item 

occurs in at most one pair and no crossings.

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

    

cost( M ) = αxi y j

(xi, y j ) ∈ M

∑

mismatch
1 2 4 3 4 

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
1 2 4 4 4 4 4 3 4 4 4 4 4 

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6
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Sequence Alignment:  Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

� Case 1:  OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

� Case 2a:  OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

� Case 2b:  OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

  

OPT(i, j) =

 

 

 
  

 

 
 
 

jδ if  i = 0

min  

αxi y j
+ OPT(i −1, j −1)

δ + OPT(i −1, j)

δ + OPT(i, j −1)

 

 
 

 
 

otherwise

iδ if  j = 0
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Sequence Alignment:  Algorithm

Analysis.  Θ(mn) time and space.

English words or sentences:  m, n  ≤ 10.

Computational biology:  m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x 1x2...x m, y 1y2...y n, δδδδ, αααα) {
for i = 0 to m

M[0, i] = i δδδδ
for j = 0 to n

M[j, 0] = j δδδδ

for i = 1 to m
for j = 1 to n

M[i, j] = min( αααα[x i, y j ] + M[i-1, j-1],
δδδδ + M[i-1, j],
δδδδ + M[i, j-1])

return M[m, n]
}

6.7  Sequence Alignment in Linear Space
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Sequence Alignment:  Linear Space

Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

� Compute OPT(i, •) from OPT(i-1, •).

� No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and 

O(mn) time.

� Clever combination of divide-and-conquer and dynamic programming.

� Inspired by idea of Savitch from complexity theory.
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Edit distance graph.

� Let f(i, j) be shortest path from (0,0) to (i, j).

� Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

  
αxiy j
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Edit distance graph.

� Let f(i, j) be shortest path from (0,0) to (i, j).

� Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j
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Edit distance graph.

� Let g(i, j) be shortest path from (i, j) to (m, n).

� Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

  
αxiy j
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Edit distance graph.

� Let g(i, j) be shortest path from (i, j) to (m, n).

� Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

n / 2

q
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Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

� Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

q

n / 2

m-n



53

Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length at most m and n. T(m, n) = O(mn log n).

Remark.  Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2).  In next slide, we save log n factor.

Sequence Alignment:  Running Time Analysis Warmup

T (m, n)  ≤  2T (m, n /2)  +  O(mn)   ⇒   T (m, n)  =  O(mn logn)
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn).

Pf.  (by induction on n)

� O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q.

� T(q, n/2) + T(m - q, n/2) time for two recursive calls. 

� Choose constant c so that:

� Base cases: m = 2 or n = 2. 

� Inductive hypothesis:  T(m, n) ≤ 2cmn.

Sequence Alignment:  Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

=
+−+=

+−+≤
+−+≤

  

T(m, 2) ≤ cm

T(2, n) ≤ cn

T(m, n) ≤ cmn + T(q, n /2) + T(m − q, n /2)
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8

Value

11

15

20

2

Weight

3

5

9 2

6

Item

1

3

4

5

2

W = 10

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

W


