CSE 421
Algorithms
Richard Anderson
Lecture 26
NP-Completeness

Announcements

- Final Exam
- Monday, March 16, 2:30-4:20 pm - Closed book, closed notes
- Practice final and answer key available
- HW 9, due Friday, March 13, 1:30 pm
- RJA Office Hours, Thursday, 11 am
- This week's topic
- NP-completeness
- Reading: 8.1-8.8: Skim the chapter, and pay more attention to particular points emphasized in class
- It will be on the final

Highlights from Monday

- P and NP
- Certificates
- Decision Problems
- Polynomial time reduction - $\mathrm{Y}<_{p} \mathrm{X}$
- NP Completeness

Definition

- Z in NP, for all Y in NP $Y<{ }_{p} Z$
- NP Completeness Proof:
- A is NPC, B in NP,
 $A<{ }_{p} B$, then B is NPC

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

Populating the NP-Completeness

 Universe- Circuit Sat $<_{p}$ 3-SAT
- 3-SAT $<_{p}$ Independent Set
- 3-SAT <p Vertex Cover
- Independent Set <p Clique
- 3-SAT $<_{p}$ Hamiltonian Circuit
- Hamiltonian Circuit $<_{p}$ Traveling Salesman

- 3-SAT <p Integer Linear Programming
- 3-SAT $<_{p}$ Graph Coloring
- 3-SAT $<_{p}$ Subset Sum
- Subset Sum $<_{p}$ Scheduling with Release times and deadlines

Satisfiability

- Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

Definitions

- Boolean variable: x_{1}, \ldots, x_{n}
- Term: x_{i} or its negation ! x_{i}
- Clause: disjunction of terms
$-t_{1}$ or t_{2} or $\ldots t_{j}$
- Problem:
- Given a collection of clauses $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$, does there exist a truth assignment that makes all the clauses true
- (x_{1} or ! x_{2}), (! x_{1} or ! x_{3}), (x_{2} or ! x_{3})

3-SAT

- Each clause has exactly 3 terms
- Variables x_{1}, \ldots, x_{n}
- Clauses $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$
$-C_{j}=\left(t_{j 1}\right.$ or $t_{j 2}$ or $\left.t_{j 3}\right)$
- Fact: Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Find a satisfying truth assignment
Theorem: CircuitSat < ${ }_{p}$ 3-SAT

Theorem: 3-SAT < ${ }_{p}$ IndSet

Vertex Cover

- Vertex Cover
- Graph $G=(V, E)$, a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

Sample Problems

- Independent Set
- Graph $G=(V, E)$, a subset S of the vertices is independent if there are no edges between vertices in S

IS $<_{p}$ VC

- Lemma: A set S is independent iff V - S is a vertex cover
- To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n-K

Clique

- Clique
- Graph $G=(V, E)$, a subset S of the vertices is a clique if there is an edge between every pair of vertices in S

Complement of a Graph

- Defn: $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ is the complement of $G=(V, E)$ if (u, v) is in E^{\prime} iff (u, v) is not in E

(3)
(4) (5)
(6)
(7)

IS $<_{p}$ Clique

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

- Hamiltonian Circuit - a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP

Complete

- Reduction from 3-SAT

Traveling Salesman Problem

- Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

