CSE 421 Algorithms

Richard Anderson Lecture 25 NP Completeness

Announcements

Final Exam

- Monday, March 16, 2:30-4:20 pmClosed book, closed notes
- Practice final and answer key available
- HW 9, due Friday, March 13, 1:30 pm
- This week's topic
 - NP-completeness
 - Reading: 8.1-8.8: Skim the chapter, and pay more attention to particular points emphasized in class
 - It will be on the final

Algorithms vs. Lower bounds

- Algorithmic Theory
 - What we can compute
 - I can solve problem X with resources R
 - Proofs are almost always to give an algorithm that meets the resource bounds
- · Lower bounds
 - How do we show that something can't be done?

Theory of NP Completeness

Polynomial Time

- P: Class of problems that can be solved in polynomial time
 - Corresponds with problems that can be solved efficiently in practice
 - Right class to work with "theoretically"

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Decision Problems

- Theory developed in terms of yes/no problems
 - Independent set
 - Given a graph G and an integer K, does G have an independent set of size at least K
 - Vertex cover
 - Given a graph G and an integer K, does the graph have a vertex cover of size at most K.

Certificate examples

- Independent set of size K
 The Independent Set
- Satifisfiable formula

 Truth assignment to the variables
- Hamiltonian Circuit Problem
 A cycle including all of the vertices
- K-coloring a graph
 - Assignment of colors to the vertices

Polynomial time reductions

- Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notations: $Y <_P X$

Lemma

 Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Lemma

 Suppose Y <_P X. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if

 X is in NP
 For every Y in NP, Y <_P X
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and X <_P Z
 Then Z is NP-Complete

Cook's Theorem

 The Circuit Satisfiability Problem is NP-Complete

History

- Jack Edmonds
- Identified NP
 Steve Cook
- Cook's Theorem NP-Completeness
- Dick Karp

 Identified "standard" collect:
 - Identified "standard" collection of NP-Complete Problems
- Leonid Levin
 - Independent discovery of NP-Completeness in USSR

Populating the NP-Completeness Universe

- Circuit Sat <_P 3-SAT
- 3-SAT $<_P$ Independent Set
- Independent Set <_P Vertex Cover
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit <_P Traveling Salesman
- 3-SAT <P Integer Linear Programming
- 3-SAT <_P Graph Coloring
- 3-SAT <_P Subset Sum
- Subset Sum <_p Scheduling with Release times and deadlines

Cook's Theorem

- The Circuit Satisfiability Problem is NP-Complete
- · Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

Satisfiability

 Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

Definitions

- Boolean variable: x₁, ..., x_n
- Term: x_i or its negation !x_i
- Clause: disjunction of terms $-t_1 \text{ or } t_2 \text{ or } \dots t_i$
- Problem:
 - Given a collection of clauses $C_1,\,\ldots\,,\,C_k,$ does there exist a truth assignment that makes all the clauses true
 - $-(x_1 \text{ or } !x_2), (!x_1 \text{ or } !x_3), (x_2 \text{ or } !x_3)$

3-SAT

- Each clause has exactly 3 terms
- Variables x_1, \ldots, x_n
- Clauses C_1, \ldots, C_k - $C_j = (t_{j1} \text{ or } t_{j2} \text{ or } t_{j3})$
- Fact: Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Find a satisfying truth assignment

 $(x \mid\mid y \mid\mid z) \&\& (!x \mid\mid !y \mid\mid !z) \&\& (!x \mid\mid y) \&\& (x \mid\mid !y) \&\& (y \mid\mid !z) \&\& (!y \mid\mid z)$

Theorem: CircuitSat <_P 3-SAT

Theorem: 3-SAT <P IndSet