CSE 421
Algorithms
Richard Anderson
Lecture 25
NP Completeness

Announcements

- Final Exam
- Monday, March 16, 2:30-4:20 pm - Closed book, closed notes
- Practice final and answer key available
- HW 9, due Friday, March 13, 1:30 pm
- This week's topic
- NP-completeness
- Reading: 8.1-8.8: Skim the chapter, and pay more attention to particular points emphasized in class
- It will be on the final

Algorithms vs. Lower bounds

Theory of NP Completeness

- Algorithmic Theory
- What we can compute
- I can solve problem X with resources R
- Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
- How do we show that something can't be done?

The Universe

Polynomial Time

- P: Class of problems that can be solved in polynomial time
- Corresponds with problems that can be solved efficiently in practice
- Right class to work with "theoretically"

What is NP?

- Problems solvable in non-deterministic polynomial time...
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- Independent set of size K
- The Independent Set
- Satifisfiable formula
- Truth assignment to the variables
- Hamiltonian Circuit Problem
- A cycle including all of the vertices
- K-coloring a graph
- Assignment of colors to the vertices

Decision Problems

- Theory developed in terms of yes/no problems
- Independent set
- Given a graph G and an integer K, does G have an independent set of size at least K
- Vertex cover
- Given a graph G and an integer K, does the graph have a vertex cover of size at most K .

Polynomial time reductions

- Y is Polynomial Time Reducible to X
- Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
- Notations: $\mathrm{Y}<_{p} \mathrm{X}$

Lemma

- Suppose $Y<_{p} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if
$-X$ is in $N P$
- For every Y in NP, $\mathrm{Y}<_{\mathrm{P}} \mathrm{X}$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and $X<_{p} Z$ - Then Z is NP-Complete

Cook's Theorem

- The Circuit Satisfiability Problem is NPComplete

Populating the NP-Completeness
 Universe

- Circuit Sat $<p$ 3-SAT
- 3-SAT <p Independent Set
- Independent Set < ${ }_{p}$ Vertex Cover
- 3-SAT < ${ }_{p}$ Hamiltonian Circuit
- Hamiltonian Circuit $<_{p}$ Traveling Salesman
- 3-SAT <p Integer Linear Programming
- 3-SAT <p Graph Coloring
- 3-SAT $<_{p}$ Subset Sum
- Subset Sum $<_{p}$ Scheduling with Release times and deadlines

Sample Problems

- Independent Set
- Graph $G=(V, E)$, a subset S of the vertices is independent if there are no edges between vertices in S

Vertex Cover

- Vertex Cover
- Graph $G=(V, E)$, a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

- Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

Satisfiability

Cook's Theorem

- The Circuit Satisfiability Problem is NPComplete
- Circuit Satisfiability
- Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

Definitions

- Boolean variable: x_{1}, \ldots, x_{n}
- Term: x_{i} or its negation ! x_{i}
- Clause: disjunction of terms
$-\mathrm{t}_{1}$ or t_{2} or $\ldots \mathrm{t}_{\mathrm{j}}$
- Problem:
- Given a collection of clauses $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$, does
there exist a truth assignment that makes all the clauses true
- (x_{1} or ! x_{2}), (! x_{1} or ! x_{3}), (x_{2} or ! x_{3})

3-SAT

- Each clause has exactly 3 terms
- Variables x_{1}, \ldots, x_{n}
- Clauses $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$
$-C_{j}=\left(t_{j 1}\right.$ or $t_{j 2}$ or $\left.t_{j 3}\right)$
- Fact: Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Theorem: CircuitSat $<_{p}$ 3-SAT

Find a satisfying truth assignment
$(x||y|| z) \& \&(!x| ||y| \mid ~!z) \& \&(!x| | y) \& \&(x|\mid ~!y) \& \&(y|\mid ~!z) \& \&(!y ~| | ~ z)$
Theorem: CircuitSat $<_{p}$ 3-SAT

Theorem: 3-SAT $<_{p}$ IndSet

