CSE 421
Algorithms
Richard Anderson
Lecture 23
Network Flow Applications

Today's topics

- Ford Fulkerson Performance
- Problem Reductions
- Undirected Flow to Flow
- Bipartite Matching
- Disjoint Path Problem
- Baseball Scheduling
- Reading: 7.5, 7.6, 7.12

Ford-Fulkerson Algorithm

while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units along in G

If the sum of the capacities of edges leaving S is at most C , then the algorithm takes at most C iterations

Performance

- The worst case performance of the FordFulkerson algorithm is horrible

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
- O(m² $\log (C))$ time algorithm for network flow
- Find the shortest augmenting path
- $O\left(m^{2} n\right)$ time algorithm for network flow
- Find a blocking flow in the residual graph - O(mnlog n) time algorithm for network flow

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph $G=(V, E)$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Converting Matching to Network Flow

Finding edge disjoint paths

Theorem

- The maximum number of edge disjoint paths equals the minimum number of edges whose removal separates s from t

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
- AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

A team wins the league if it has strictly more wins than any other team at the end of the season A team ties for first place if no team has more wins, and there is some other team with the same number of wins

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dinosaurs (5)
- Earthworms (5)
- 18 games to play
- AC, AD, AD, AD, BC, BC, $B C, B C, B C, B D, B E, B E$, BE, BE, CE, CE, CE, DE

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Remaining games

$A C, A D, A D, A D, B C, B C, B C, B C, B C, B D, B E, B E, B E, B E, C E, C E, C E, D E$
(5)

(B6)
(ㄷ) (DE)
(A)
(B)

(D)
(E)
(T)

