CSE 421
Algorithms
Richard Anderson
Lecture 20
LCS / Shortest Paths

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

ocurranec	attacggct
occurrence	tacgacca

tacgacca

Optimization recurrence

If $\mathrm{a}_{\mathrm{j}}=\mathrm{b}_{\mathrm{k}}$, Opt[$[\mathrm{j}, \mathrm{k}]=1+\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}-1]$
If $\mathrm{a}_{\mathrm{j}}!=\mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=\max (\mathrm{Opt}[\mathrm{j}-1, \mathrm{k}], \operatorname{Opt}[\mathrm{j}, \mathrm{k}-1])$

Storing the path information

$\mathrm{A}[1 . . \mathrm{m}], \mathrm{B}[1 . . \mathrm{n}]$

for $\mathrm{i}:=1$ to $\mathrm{m} \quad$ Opt $[\mathrm{i}, 0]:=0$;
for $\mathrm{j}:=1$ to $\mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0$;
Opt[0,0] := 0;
for $\mathrm{i}:=1$ to m

for $\mathrm{j}:=1$ to n
if $\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{j}]\{$ Opt[i,j]:= $1+$ Opt[i-1,j-1]; Best[i,j]:= Diag; \} else if Opt[i-1, j] >= Opt[i, j-1]
$\{$ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; \}
else $\quad\{\operatorname{Opt}[i, j]:=\operatorname{Opt}[i, j-1]$, Best[i,j] := Down; \}

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 100,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_{i} matched with b_{j}

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{n}+\mathrm{m})$ space

- Divide and conquer algorithm
- Recomputing values used to save space

Divide and Conquer

- $A=a_{1}, \ldots, a_{m} \quad B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$

Memory Efficient LCS Summary

- We can afford $O(n m)$ time, but we can't afford $\mathrm{O}(\mathrm{nm})$ space
- If we only want to compute the length of the LCS, we can easily reduce space to $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Avoid storing the value by recomputing values
- Divide and conquer used to reduce problem sizes

Shortest Paths with Dynamic
Programming

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- $\mathrm{O}(m \log n$) time, positive cost edges
- General case - handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
- O(mn) time for graphs with negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

Express as a recurrence

- $\operatorname{Opt}_{\mathrm{k}}(\mathrm{w})=\min _{\mathrm{x}}\left[\mathrm{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
- $\mathrm{Opt}_{0}(\mathrm{w})=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Shortest paths with a fixed number of edges

- Find the shortest path from v to w with exactly k edges

Express as a recurrence
- $\operatorname{Opt}_{k}(w)=\min _{x}\left[\operatorname{Opt}_{k-1}(x)+c_{x w}\right]$
- Opt $(w)=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Algorithm, Version 1
foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{O}, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min _{x}(M[i-1, x]+\operatorname{cost}[x, w]) ;$

Algorithm, Version 2

foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{O}, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)$

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i, for all $w, M[w]<=M[i, w]$;
- Reconstructing the path:
- Set $P[w]=x$, whenever $M[w]$ is updated from vertex x

Algorithm, Version 3

foreach w
$M[w]=$ infinity;
$\mathrm{M}[\mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)$

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal when w is updated
- $M[x]$ could be reduced after update
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up
- $0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$

Finding negative cost cycles

- What if you want to find negative cost cycles?

