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CSE 421
Algorithmsg

Richard Anderson
Lecture 20

LCS / Shortest Paths

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if 
C can be obtained by removing elements 
from A (but retaining order)

• LCS(A B): A maximum length sequence• LCS(A, B):  A maximum length sequence 
that is a subsequence of both A and B
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Optimization recurrence

If aj = bk,  Opt[ j,k ] = 1 + Opt[ j-1, k-1 ]

If aj != bk,  Opt[ j,k] = max(Opt[ j-1,k], Opt[ j,k-1])

Dynamic Programming 
Computation

Storing the path information

A[1..m],  B[1..n]

for i := 1 to m     Opt[i, 0] := 0;

for j := 1 to n     Opt[0,j] := 0;

Opt[0,0] := 0;
a a

b 1
…

b n

for i := 1 to m

for j := 1 to n

if A[i] = B[j]  {  Opt[i,j] := 1 + Opt[i-1,j-1];  Best[i,j] := Diag; }

else if Opt[i-1, j] >= Opt[i, j-1]

{  Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

else        {  Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

a1…am

How good is this algorithm?

• Is it feasible to compute the LCS of two 
strings of length 100,000 on a standard 
desktop PC?  Why or why not.
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Observations about the Algorithm

• The computation can be done in O(m+n) 
space if we only need one column of the 
Opt values or Best Values

• The algorithm can be run from either end 
of the strings

Computing LCS in O(nm) time and 
O(n+m) space

• Divide and conquer algorithm
• Recomputing values used to save space

Divide and Conquer Algorithm

• Where does the best path cross the 
middle column?

• For a fixed i, and for each j, compute the 
LCS that has ai matched with bj

Divide and Conquer

• A = a1,…,am B = b1,…,bn

• Find j such that 
– LCS(a1…am/2, b1…bj) and

LCS( b b ) i ld ti l l ti– LCS(am/2+1…am,bj+1…bn) yield optimal solution

• Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Memory Efficient LCS Summary

• We can afford O(nm) time, but we can’t 
afford O(nm) space

• If we only want to compute the length of 
the LCS, we can easily reduce space to , y p
O(n+m)

• Avoid storing the value by recomputing 
values
– Divide and conquer used to reduce problem 

sizes
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Shortest Paths with Dynamic 
Programmingg g

Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths 
Algorithm
– O(mlog n) time, positive cost edges

• General case – handling negative edgesGeneral case handling negative edges
• If there exists a negative cost cycle, the 

shortest path is not defined
• Bellman-Ford Algorithm

– O(mn) time for graphs with negative cost 
edges

Lemma

• If a graph has no negative cost cycles, 
then the shortest paths are simple paths

Sh t t th h t t 1 d• Shortest paths have at most n-1 edges

Shortest paths with a fixed number 
of edges

• Find the shortest path from v to w with 
exactly k edges

Express as a recurrence

• Optk(w) = minx [Optk-1(x) + cxw]
• Opt0(w) = 0 if v=w and infinity otherwise 

Algorithm, Version 1

foreach w

M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

foreach w

M[i, w] = minx(M[i-1,x] + cost[x,w]);
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Algorithm, Version 2

foreach w

M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

foreach w

M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w]))

Algorithm, Version 3

foreach w

M[w] = infinity;

M[v] = 0;

for i = 1 to n-1

foreach w

M[w] = min(M[w], minx(M[x] + cost[x,w]))

Correctness Proof for Algorithm 3

• Key lemma – at the end of iteration i, for 
all w,  M[w] <= M[i, w];

• Reconstructing the path:
– Set P[w] = x, whenever M[w] is updated from 

vertex x

If the pointer graph has a cycle, then 
the graph has a negative cost cycle
• If P[w] = x then M[w] >= M[x] + cost(x,w)

– Equal when w is updated
– M[x] could be reduced after update

• Let v1, v2,…vk be a cycle in the pointer graph 1, 2, k y p g p
with (vk,v1) the last edge added
– Just before the update

• M[vj] >= M[vj+1] + cost(vj+1, vj) for j < k
• M[vk] > M[v1] + cost(v1, vk)

– Adding everything up
• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4

Negative Cycles

• If the pointer graph has a cycle, then the 
graph has a negative cycle

• Therefore:  if the graph has no negative 
cycles then the pointer graph has nocycles, then the pointer graph has no 
negative cycles

Finding negative cost cycles

• What if you want to find negative cost cycles?
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Foreign Exchange Arbitrage

USD EUR CAD

USD ------ 0.8 1.2

USD

CADEUR

1.2 1.2

EUR 1.2 ------ 1.6

CAD 0.8 0.6 -----

0.6

USD

CADEUR

0.8 0.8

1.6


