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CSE 421
Algorithmsg

Richard Anderson
Lecture 19

Longest Common Subsequence

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if 
C can be obtained by removing elements 
from A (but retaining order)

• LCS(A B): A maximum length sequence• LCS(A, B):  A maximum length sequence 
that is a subsequence of both A and B

ocurranec

occurrence

attacggct

tacgacca

Determine the LCS of the following 
strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

• Align sequences with gaps
CAT TGA  AT

CAGAT AGGA

• Charge δx if character x is unmatched
• Charge γxy if character x is matched to 

character y
Note: the problem is often expressed as a minimization problem,  
with γxx = 0 and δx > 0

LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[ j, k] is the length of          
LCS(a1a2…aj, b1b2…bk)

Optimization recurrence

If aj = bk,  Opt[ j,k ] = 1 + Opt[ j-1, k-1 ]

If aj != bk,  Opt[ j,k] = max(Opt[ j-1,k], Opt[ j,k-1])
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Give the Optimization Recurrence 
for the String Alignment Problem

• Charge δx if character x is unmatched
• Charge γxy if character x is matched to 

character y

Opt[ j, k] = 

Let aj = x and bk = y        
Express as minimization

Dynamic Programming 
Computation

Code to compute Opt[j,k]  Storing the path information

A[1..m],  B[1..n]

for i := 1 to m     Opt[i, 0] := 0;

for j := 1 to n     Opt[0,j] := 0;

Opt[0,0] := 0;
a a

b 1
…

b n

for i := 1 to m

for j := 1 to n

if A[i] = B[j]  {  Opt[i,j] := 1 + Opt[i-1,j-1];  Best[i,j] := Diag; }

else if Opt[i-1, j] >= Opt[i, j-1]

{  Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

else        {  Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

a1…am

How good is this algorithm?

• Is it feasible to compute the LCS of two 
strings of length 100,000 on a standard 
desktop PC?  Why or why not.

Observations about the Algorithm

• The computation can be done in O(m+n) 
space if we only need one column of the 
Opt values or Best Values

• The algorithm can be run from either end 
of the strings
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Computing LCS in O(nm) time and 
O(n+m) space

• Divide and conquer algorithm
• Recomputing values used to save space

Divide and Conquer Algorithm

• Where does the best path cross the 
middle column?

• For a fixed i, and for each j, compute the 
LCS that has ai matched with bj

Constrained LCS

• LCSi,j(A,B):  The LCS such that
– a1,…,ai paired with elements of b1,…,bj

– ai+1,…am paired with elements of bj+1,…,bn

• LCS4,3(abbacbb, cbbaa)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B)
j left right
0 0 4
1 1 4
2 1 3
3 2 3
4 3 3
5 3 2
6 3 2
7 3 1
8 4 1
9 4 0

Computing the middle column

• From the left, compute LCS(a1…am/2,b1…bj)
• From the right, compute LCS(am/2+1…am,bj+1…bn)
• Add values for corresponding j’s

• Note – this is space efficient
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Divide and Conquer

• A = a1,…,am B = b1,…,bn

• Find j such that 
– LCS(a1…am/2, b1…bj) and

LCS( b b ) i ld ti l l ti– LCS(am/2+1…am,bj+1…bn) yield optimal solution

• Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that 
T(m,n) <= 2cmn Memory Efficient LCS Summary

• We can afford O(nm) time, but we can’t 
afford O(nm) space

• If we only want to compute the length of 
the LCS, we can easily reduce space to , y p
O(n+m)

• Avoid storing the value by recomputing 
values
– Divide and conquer used to reduce problem 

sizes


