CSE 421
Algorithms
Richard Anderson
Lecture 19
Longest Common Subsequence

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B
ocurranec
occurrence
attacggct
tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt $[\mathrm{j}, \mathrm{k}]$ is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

String Alignment Problem

- Align sequences with gaps

CAT TGA AT
CAGAT AGGA

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Note: the problem is often expressed as a minimization problem,
with $\gamma_{x x}=0$ and $\delta_{x}>0$

Optimization recurrence

If $\mathrm{a}_{\mathrm{j}}=\mathrm{b}_{\mathrm{k}}, \quad$ Opt $[\mathrm{j}, \mathrm{k}]=1+\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}-1]$

If $\mathrm{a}_{\mathrm{j}}!=\mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=\max (\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}], \operatorname{Opt}[\mathrm{j}, \mathrm{k}-1])$

Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y

Opt[j, k] =

Let $\mathrm{a}_{\mathrm{j}}=\mathrm{x}$ and $\mathrm{b}_{\mathrm{k}}=\mathrm{y}$ Express as minimization

Dynamic Programming Computation

Storing the path information

$\mathrm{A}[1 . . \mathrm{m}], \mathrm{B}[1 . . \mathrm{n}]$

for $\mathrm{i}:=1$ to $\mathrm{m} \quad$ Opt $[\mathrm{i}, 0]:=0$
for $\mathrm{j}:=1$ to $\mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0$;
Opt $[0,0]:=0$;
for $\mathrm{i}:=1$ to m

for $\mathrm{j}:=1$ to n
if $A[i]=B[j]\{$ Opt $[i, j]:=1+\operatorname{Opt}[i-1, j-1] ;$ Best $[i, j]:=$ Diag; $\}$ else if Opt[i-1, j] >=Opt[i, j-1]
\{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; \}
else $\quad\{$ Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; \}

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 100,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{n}+\mathrm{m})$ space

- Divide and conquer algorithm
- Recomputing values used to save space

Constrained LCS

- $\operatorname{LCS}_{\mathrm{i}, \mathrm{j}}(\mathrm{A}, \mathrm{B})$: The LCS such that
- a_{1}, \ldots, a_{i} paired with elements of b_{1}, \ldots, b_{j}
$-a_{i+1}, \ldots a_{m}$ paired with elements of b_{j+1}, \ldots, b_{n}
- $\operatorname{LCS}_{4,3}($ abbacbb, cbbaa)

A = RRSSRTTRTS $\mathrm{B}=\mathrm{RT}$ SRRSTST

Compute $\operatorname{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_{i} matched with b_{j}

A = RRSSRTTRTS $\mathrm{B}=$ RTSRRSTST

Compute $\mathrm{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

Computing the middle column

- From the left, compute LCS $\left(\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m} / 2}, \mathrm{~b}_{1} \ldots \mathrm{~b}_{\mathrm{j}}\right)$
- From the right, compute $\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$
- Add values for corresponding j's

- Note - this is space efficient

Divide and Conquer

- $A=a_{1}, \ldots, a_{m} \quad B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

Prove by induction that $\mathrm{T}(\mathrm{m}, \mathrm{n})<=2 \mathrm{cmn}$

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$

Memory Efficient LCS Summary

- We can afford $O(n m)$ time, but we can't afford $\mathrm{O}(\mathrm{nm})$ space
- If we only want to compute the length of the LCS, we can easily reduce space to $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Avoid storing the value by recomputing values
- Divide and conquer used to reduce problem sizes

