CSE 421
Algorithms
Richard Anderson
Lecture 18
Dynamic Programming

## Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{1_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$
- Bound K
- Find set $S$ of indices to:
- Maximize $\sum_{\text {is } S} \mathrm{v}_{\mathrm{i}}$ such that $\sum_{\text {is } S} \mathrm{w}_{\mathrm{i}}<=\mathrm{K}$

$$
\begin{aligned}
& \text { Midterm Probem } \\
& w_{i}=1 \text { or } w_{i}=2
\end{aligned}
$$

- Idea one:
- sort items by $v_{i} / w_{i}$
- greedy packing

| 7 | 12 | 11 | 1 |
| :--- | :--- | :--- | :--- |

## Subset Sum Problem

- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}=\{6,8,9,11,13,16,18,24\}$
- Find a subset that has as large a sum as possible, without exceeding 50


## Adding a variable for Weight

- Opt[ $\mathrm{j}, \mathrm{K}$ ] the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{i}}\right\}$ that sums to at most K
- $\{2,4,7,10\}$
- Opt $[2,7]=$
- Opt[3, 7] =
- Opt[3,12] =
- Opt[4,12] =


## Subset Sum Recurrence

- Opt[ $\mathrm{j}, \mathrm{K}]$ the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{j}\right\}$ that sums to at most $K$


## Subset Sum Grid

Opt [ j, K] $=\max \left(\right.$ Opt $\left.[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

$\{2,4,7,10\}$

## Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Bound K
- Find set S of indices to:
- Maximize $\sum_{\text {is } S} \mathrm{v}_{\mathrm{i}}$ such that $\sum_{\text {is } S} \mathrm{w}_{\mathrm{i}}<=\mathrm{K}$


## Knapsack Recurrence

Subset Sum Recurrence:
$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\mathrm{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

Knapsack Recurrence:

## Knapsack Grid

$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$


Weights $\{2,4,7,10\}$ Values: $\{3,5,9,16\}$

## Dynamic Programming <br> Examples

- Examples
- Optimal Billboard Placement
- Text, Solved Exercise, Pg 307
- Linebreaking with hyphenation
- Compare with HW problem 6, Pg 317
- String approximation
- Text, Solved Exercise, Page 309


## Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?


## Billboard Placement

- Maximize income in placing billboards
$-b_{i}=\left(p_{i}, v_{i}\right), v_{i}$ : value of placing billboard at position $\mathrm{p}_{\mathrm{i}}$
- Constraint:
- At most one billboard every five miles
- Example
$-\{(6,5),(8,6),(12,5),(14,1)\}$


## Opt[k] = fun(Opt[0],...,Opt[k-1])

- How is the solution determined from sub problems?


## Solution

```
= 0; // j is five miles behind the current position
            // the last valid location for a billboard, if one placed at P[k
    for k:= 1 to n
        while (P[j] < P[k]-5)
            j:= j + 1;
        j:= j-1;
        Opt[ k] = Max(Opt[ k-1], V[ k ] + Opt[ j ]);
```

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
- Avoid excessive white space
- Limit number of hyphens
- Avoid widows and orphans
- Etc.


## Penalty Function

- Pen( $\mathrm{i}, \mathrm{j})$ - penalty of starting a line a position $i$, and ending at position $j$

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

- Key technical idea
- Number the breaks between words/syllables


## Formal Model

- Strings from B assigned to nonoverlapping positions of $S$
- Strings from B may be used multiple times
- Cost of $\delta$ for unmatched character in S
- Cost of $\gamma$ for mismatched character in S
- MisMatch(i, j) - number of mismatched characters of $b_{j}$, when aligned starting with position i in s .
Opt[k] = fun(Opt[0], ..,Opt[k-1])
- How is the solution determined from sub problems? starting at position i of S .


## String approximation

- Given a string S, and a library of strings B $=\left\{b_{1}, \ldots b_{m}\right\}$, construct an approximation of the string $S$ by using copies of strings in $B$.
$B=\{a b a b, b b b a a a, c c b b, c c a a c c\}$
S = abaccbbbaabbccbbccaabab

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?


## Solution

for $\mathrm{i}:=1$ to n
Opt[k] $=$ Opt[k-1] $+\delta$;
for $\mathrm{j}:=1$ to $|\mathrm{B}|$
$\mathrm{p}=\mathrm{i}-\operatorname{len}\left(\mathrm{b}_{\mathrm{j}}\right) ;$
Opt[k] $=\min ($ Opt[k], Opt[p-1] $+\gamma \operatorname{MisMatch(p,~j)})$;

