
1

CSE 421
Algorithmsg

Richard Anderson
Lecture 18

Dynamic Programming

Knapsack Problem
• Items have weights and values
• The problem is to maximize total value subject to

a bound on weght
• Items {I1, I2, … In}

– Weights {w1, w2, …,wn}
– Values {v1, v2, …, vn}
– Bound K

• Find set S of indices to:

– Maximize ΣiεSvi such that ΣiεSwi <= K

Midterm Probem
wi = 1 or wi = 2

• Idea one:
– sort items by vi/wi

– greedy packing

7 112 11 K = 4

Midterm Probem
wi = 1 or wi = 2

• Idea two:
– pair up items of weight 1
– greedy packing

7 312 11 K = 66 6

Subset Sum Problem

• Let w1,…,wn = {6, 8, 9, 11, 13, 16, 18, 24}
• Find a subset that has as large a sum as

possible, without exceeding 50

Adding a variable for Weight

• Opt[j, K] the largest subset of {w1, …, wj}
that sums to at most K

• {2, 4, 7, 10}
O t[2 7]– Opt[2, 7] =

– Opt[3, 7] =
– Opt[3,12] =
– Opt[4,12] =

2

Subset Sum Recurrence

• Opt[j, K] the largest subset of {w1, …, wj}
that sums to at most K

Subset Sum Grid

4
3

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

3
2
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{2, 4, 7, 10}

Subset Sum Code

for j = 1 to n
for k = 1 to W

Opt[j, k] = max(Opt[j-1, k], Opt[j-1, k-wj] + wj)

Knapsack Problem
• Items have weights and values
• The problem is to maximize total value subject to

a bound on weght
• Items {I1, I2, … In}

– Weights {w1, w2, …,wn}
– Values {v1, v2, …, vn}
– Bound K

• Find set S of indices to:

– Maximize ΣiεSvi such that ΣiεSwi <= K

Knapsack Recurrence

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + wj)

Subset Sum Recurrence:

Knapsack Recurrence:Knapsack Recurrence:

Knapsack Grid

4
3

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – wj] + vj)

2
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

3

Dynamic Programming
Examples

• Examples
– Optimal Billboard Placement

• Text, Solved Exercise, Pg 307
– Linebreaking with hyphenation– Linebreaking with hyphenation

• Compare with HW problem 6, Pg 317
– String approximation

• Text, Solved Exercise, Page 309

Billboard Placement

• Maximize income in placing billboards
– bi = (pi, vi), vi: value of placing billboard at

position pi

• Constraint:• Constraint:
– At most one billboard every five miles

• Example
– {(6,5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming
Algorithm for Billboard Placement

• Compute Opt[1], Opt[2], . . ., Opt[n]
• What is Opt[k]?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub
problems?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i

Solution

j = 0; // j is five miles behind the current position

// the last valid location for a billboard, if one placed at P[k]

for k := 1 to n

while (P[j] < P[k] – 5)

j j + 1j := j + 1;

j := j – 1;

Opt[k] = Max(Opt[k-1] , V[k] + Opt[j]);

Optimal line breaking and hyphen-
ation

• Problem: break lines and insert hyphens to
make lines as balanced as possible

• Typographical considerations:
A id i hit– Avoid excessive white space

– Limit number of hyphens
– Avoid widows and orphans
– Etc.

4

Penalty Function

• Pen(i, j) – penalty of starting a line a
position i, and ending at position j

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

• Key technical idea
– Number the breaks between words/syllables

String approximation

• Given a string S, and a library of strings B
= {b1, …bm}, construct an approximation of
the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

• Strings from B assigned to non-
overlapping positions of S

• Strings from B may be used multiple times
C t f δ f t h d h t i S• Cost of δ for unmatched character in S

• Cost of γ for mismatched character in S
– MisMatch(i, j) – number of mismatched

characters of bj, when aligned starting with
position i in s.

Design a Dynamic Programming
Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . ., Opt[n]
• What is Opt[k]?

Target string S = s1s2…sn
Library of strings B = {b1,…,bm}
MisMatch(i,j) = number of mismatched characters with bj when aligned
starting at position i of S.

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub
problems?

Target string S = s1s2…sn
Library of strings B = {b1,…,bm}
MisMatch(i,j) = number of mismatched characters with bj when aligned
starting at position i of S.

Solution

for i := 1 to n

Opt[k] = Opt[k-1] + δ;

for j := 1 to |B|

p = i – len(bj);

Opt[k] = min(Opt[k], Opt[p-1] + γ MisMatch(p, j));

