CSE 421 Algorithms

Richard Anderson Lecture 16 Dynamic Programming

Optimality Condition

- Opt[j] is the maximum weight independent set of intervals $I_1,\,I_2,\,\ldots,\,I_j$
- Opt[j] = max(Opt[j 1], w_j + Opt[p[j]])
 Where p[j] is the index of the last interval which finishes before l_i starts

Algorithm

MaxValue(j) = if j = 0 return 0 else return max(MaxValue(j-1), w_j + MaxValue(p[j]))

Worst case run time: 2ⁿ

A better algorithm

```
M[\ j\ ] initialized to -1 before the first recursive call for all j
```

```
MaxValue(j) =

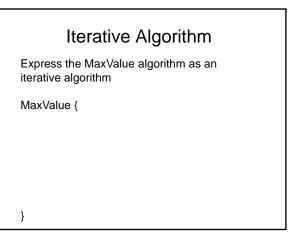
if j = 0 return 0;

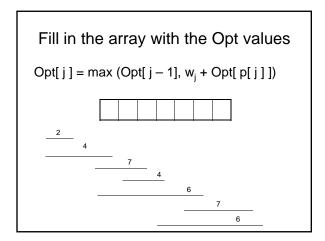
else if M[ j ] != -1 return M[ j ];

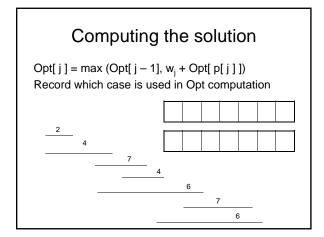
else

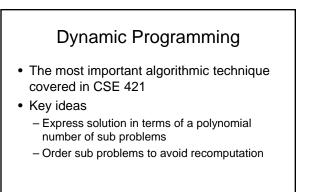
M[ j ] = max(MaxValue(j-1), w<sub>j</sub> + MaxValue(p[ j ]));

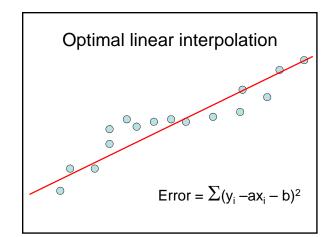
return M[ j ];
```

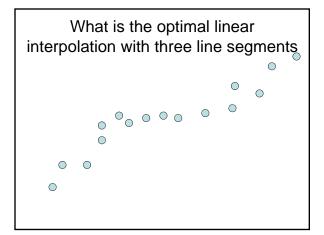


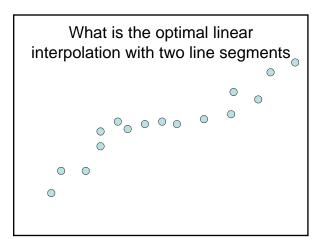


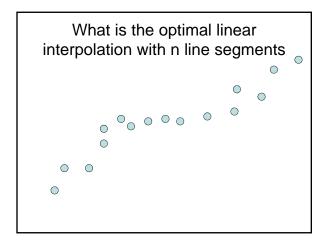


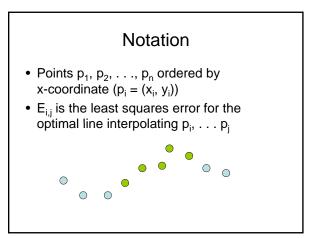












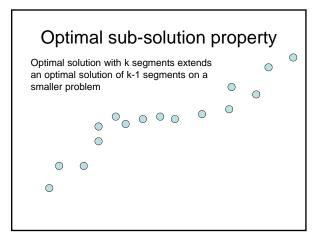
- Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments
- + $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with k segments

- Optimal segmentation with three segments $Min_{i,j} \{E_{1,i} + E_{i,j} + E_{j,n}\} \\ O(n^2) combinations considered$
- Generalization to k segments leads to considering O(n^{k-1}) combinations

$Opt_k[\ j\]: Minimum\ error \\ approximating\ p_1 \dots p_j \ with\ k\ segments$

How do you express $Opt_{k-1}[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?



Optimal multi-segment interpolation

```
Compute Opt[ k, j ] for 0 < k < j < n
```

```
for j := 1 to n

Opt[ 1, j] = E_{1,j};

for k := 2 to n-1

for j := 2 to n

t := E_{1,j}

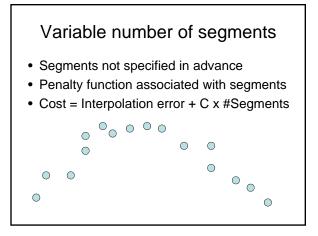
for i := 1 to j -1

t = min (t, Opt[k-1, i] + E_{i,j})

Opt[k, j] = t
```

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution



• Opt[j] = min($E_{1,j}$, min_i(Opt[i] + $E_{i,j}$ + P))