CSE 421 Algorithms

Richard Anderson Lecture 14 **Divide and Conquer**

Announcements

- Mon. February 9 - Midterm
- Wed. February 11
- Punya Biswal
- Divide and Conquer Algorithms
- Read 5.3 5.5
- Fri. February 13
 - Anna Karlin
 - FFT Read 5.6

Midterm exam

- Instructions
 - Closed book, closed notes, no calculators
 - Time limit: 50 minutes
 - Answer the problems on the exam paper
 - If you need extra space use the back of the page
 - Problems are not of equal difficulty, if you get stuck on a problem, move on.
- · Seven problems
 - Uniform coverage
 - Several "true/false/justify"
 - Two algorithm design questions

Where I will be . . .

- Digital StudyHall Project
- · Lucknow, India

Talk: Richard Anderson, CIS Lecture Series, Wednesday, February 18, 3pm, MGH 420

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1) - The bottom level wins
- Geometrically decreasing (x < 1)- The top level wins
- Balanced (x = 1)
 - Equal contribution

 $T(n) = aT(n/b) + n^{c}$

- Balanced: a = b^c
- Increasing: a > b^c
- Decreasing: a < b^c

Divide and Conquer Algorithms

- Split into sub problems Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages Quicksort – progress made at the split step
 Mergesort – progress made at the combine step
- D&C Algorithms
 - Strassen's Algorithm Matrix Multiplication
- Inversions
- Median
- Closest Pair
- Integer Multiplication
- FFT

Inversion Problem

- Let a₁, . . . a_n be a permutation of 1 . . n
- (a_i, a_i) is an inversion if i < j and a_i > a_i

4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time - Can we do better?

Application

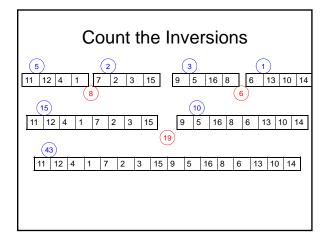
- · Counting inversions can be use to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

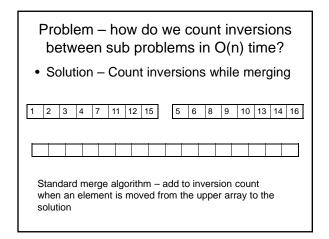
Inversion Problem

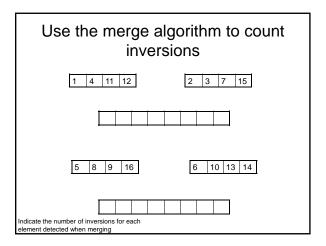
- Let $a_1, \ldots a_n$ be a permutation of $1 \ldots n$
- (a_i, a_i) is an inversion if i < j and a_i > a_i

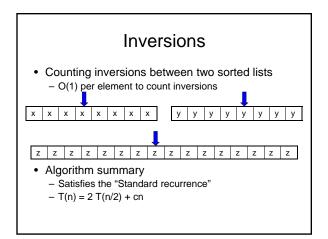
4, 6, 1, 7, 3, 2, 5

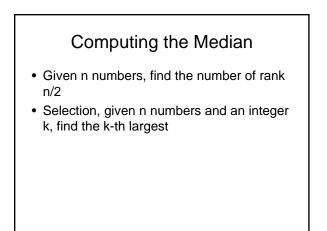
- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time - Can we do better?

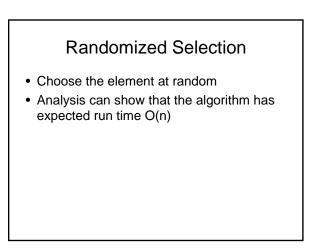

Counting Inversions

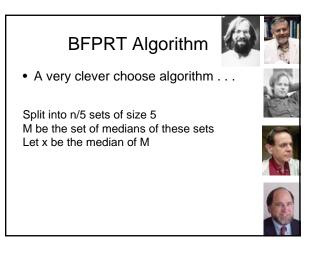

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14


Count inversions on lower half


Count inversions on upper half


Count the inversions between the halves





Select(A, k)				
Selec	$\begin{array}{l} \text{t(A, k)} \\ \text{Choose element x from} \\ \text{S}_1 = \{y \text{ in A} \mid y < x\} \\ \text{S}_2 = \{y \text{ in A} \mid y > x\} \\ \text{S}_3 = \{y \text{ in A} \mid y = x\} \\ \text{if } (\text{S}_2 > = k) \\ \text{return Select}(S \\ \text{else if } (\text{S}_2 + \text{S}_3 > = k) \\ \text{return x} \\ \text{else} \\ \text{return Select}(S \\ \end{array}$	₂ , k)	- S ₃)	
	S ₁	S ₃	S ₂	

Deterministic Selection

• What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$

BFPRT runtime

|S₁| < 3n/4, |S₂| < 3n/4

Split into n/5 sets of size 5 M be the set of medians of these sets x be the median of M Construct S_1 and S_2 Recursive call in S_1 or S_2

BFPRT Recurrence

• T(n) <= T(3n/4) + T(n/5) + c n

Prove that T(n) <= 20 c n