
1

CSE 421
Algorithmsg

Richard Anderson
Lecture 14

Divide and Conquer

Announcements

• Mon. February 9
– Midterm

• Wed. February 11
P Bi l– Punya Biswal

– Divide and Conquer Algorithms
– Read 5.3 – 5.5

• Fri. February 13
– Anna Karlin
– FFT – Read 5.6

Midterm exam
• Instructions

– Closed book, closed notes, no calculators
– Time limit: 50 minutes
– Answer the problems on the exam paper
– If you need extra space use the back of the page– If you need extra space use the back of the page
– Problems are not of equal difficulty, if you get

stuck on a problem, move on.
• Seven problems

– Uniform coverage
– Several “true/false/justify”
– Two algorithm design questions

Where I will be . . .

• Digital StudyHall Project
• Lucknow, India

Talk: Richard Anderson, CIS Lecture Series,
Wednesday, February 18, 3pm, MGH 420

What you really need to know
about recurrences

• Work per level changes geometrically with
the level

• Geometrically increasing (x > 1)
Th b tt l l i– The bottom level wins

• Geometrically decreasing (x < 1)
– The top level wins

• Balanced (x = 1)
– Equal contribution

T(n) = aT(n/b) + nc

• Balanced: a = bc

• Increasing: a > bc

• Decreasing: a < bc

2

Divide and Conquer Algorithms
• Split into sub problems
• Recursively solve the problem
• Combine solutions

• Make progress in the split and combine stages
Quicksort progress made at the split step– Quicksort – progress made at the split step

– Mergesort – progress made at the combine step
• D&C Algorithms

– Strassen’s Algorithm – Matrix Multiplication
– Inversions
– Median
– Closest Pair
– Integer Multiplication
– FFT

Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n
• (ai, aj) is an inversion if i < j and ai > aj

4, 6, 1, 7, 3, 2, 5

• Problem: given a permutation, count the number
of inversions

• This can be done easily in O(n2) time
– Can we do better?

Application

• Counting inversions can be use to
measure how close ranked preferences
are

People rank 20 movies based on their– People rank 20 movies, based on their
rankings you cluster people who like that
same type of movie

Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n
• (ai, aj) is an inversion if i < j and ai > aj

4, 6, 1, 7, 3, 2, 5

• Problem: given a permutation, count the number
of inversions

• This can be done easily in O(n2) time
– Can we do better?

Counting Inversions
11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions
5 12 3

15 10

8 6

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

19

43

3

Problem – how do we count inversions
between sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count
when an element is moved from the upper array to the
solution

Use the merge algorithm to count
inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each
element detected when merging

Inversions
• Counting inversions between two sorted lists

– O(1) per element to count inversions

x x x x x x x x y y y y y y y y

• Algorithm summary
– Satisfies the “Standard recurrence”
– T(n) = 2 T(n/2) + cn

z z z z z z z z z z z z z z z z

Computing the Median

• Given n numbers, find the number of rank
n/2

• Selection, given n numbers and an integer
k find the k th largestk, find the k-th largest

Select(A, k)
Select(A, k){

Choose element x from A
S1 = {y in A | y < x}
S2 = {y in A | y > x}
S3 = {y in A | y = x}
if (|S2| >= k)

S (S)return Select(S2, k)
else if (|S2| + |S3| >= k)

return x
else

return Select(S1, k - |S2| - |S3|)
}

S1 S3 S2

Randomized Selection

• Choose the element at random
• Analysis can show that the algorithm has

expected run time O(n)

4

Deterministic Selection

• What is the run time of select if we can
guarantee that choose finds an x such that
|S1| < 3n/4 and |S2| < 3n/4

BFPRT Algorithm

• A very clever choose algorithm . . .

Split into n/5 sets of size 5
M b th t f di f th tM be the set of medians of these sets
Let x be the median of M

BFPRT runtime

|S1| < 3n/4, |S2| < 3n/4

Split into n/5 sets of size 5
M be the set of medians of these setsM be the set of medians of these sets
x be the median of M
Construct S1 and S2
Recursive call in S1 or S2

BFPRT Recurrence

• T(n) <= T(3n/4) + T(n/5) + c n

Prove that T(n) <= 20 c n

