CSE 421
Algorithms
Richard Anderson
Lecture 14
Divide and Conquer

Midterm exam

- Instructions
- Closed book, closed notes, no calculators
- Time limit: 50 minutes
- Answer the problems on the exam paper
- If you need extra space use the back of the page
- Problems are not of equal difficulty, if you get stuck on a problem, move on.
- Seven problems
- Uniform coverage
- Several "true/false/justify"
- Two algorithm design questions

Announcements

- Mon. February 9
- Midterm
- Wed. February 11
- Punya Biswal
- Divide and Conquer Algorithms
- Read 5.3-5.5
- Fri. February 13
- Anna Karlin
- FFT - Read 5.6

Where I will be . . .

- Digital StudyHall Project
- Lucknow, India

Talk: Richard Anderson, CIS Lecture Series, Wednesday, February 18, 3pm, MGH 420

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($x<1$)
- The top level wins
- Balanced ($x=1$)
- Equal contribution

$$
T(n)=a T(n / b)+n^{c}
$$

- Balanced: $\mathrm{a}=\mathrm{b}^{\mathrm{c}}$
- Increasing: $\mathrm{a}>\mathrm{b}^{\mathrm{c}}$
- Decreasing: $\mathrm{a}<\mathrm{b}^{\mathrm{c}}$

Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages
- Quicksort - progress made at the split step
- Mergesort - progress made at the combine step
- D\&C Algorithms
- Strassen's Algorithm - Matrix Multiplication
- Inversions
- Median
- Closest Pair
- Integer Multiplication
- FFT

Inversion Problem

- Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
- $\left(a_{i}, a_{j}\right)$ is an inversion if $i<j$ and $a_{i}>a_{j}$
$4,6,1,7,3,2,5$
- Problem: given a permutation, count the number of inversions
- This can be done easily in $O\left(n^{2}\right)$ time - Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
- People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Inversion Problem

- Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
- $\left(a_{i}, a_{j}\right)$ is an inversion if $i<j$ and $a_{i}>a_{j}$
$4,6,1,7,3,2,5$
- Problem: given a permutation, count the number of inversions
- This can be done easily in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time - Can we do better?

Problem - how do we count inversions between sub problems in $O(n)$ time?

- Solution - Count inversions while merging

| 1 | 2 | 3 | 4 | 7 | 11 | 12 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Standard merge algorithm - add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions

1	4	11	12

5	8	9	16

6	10	13	14

Computing the Median

- Given n numbers, find the number of rank n/2
- Selection, given n numbers and an integer k, find the k-th largest

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time $\mathrm{O}(\mathrm{n})$

Deterministic Selection

- What is the run time of select if we can guarantee that choose finds an x such that $\left|S_{1}\right|<3 n / 4$ and $\left|S_{2}\right|<3 n / 4$

BFPRT Algorithm

- A very clever choose algorithm . . .

Split into $\mathrm{n} / 5$ sets of size 5
M be the set of medians of these sets Let x be the median of M

BFPRT Recurrence

- $T(n)<=T(3 n / 4)+T(n / 5)+c n$

