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CSE 421
Algorithmsg

Richard Anderson
Lecture 10-11

Minimum Spanning Trees

Shortest Paths

• Negative Cost Edges
– Dijkstra’s algorithm assumes positive cost edges
– For some applications, negative cost edges make 

sense
– Shortest path not well defined if a graph has a 

negative cost cycle
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Negative Cost Edge Preview

• Topological Sort can be used for solving 
the shortest path problem in directed 
acyclic graphs

• Bellman Ford algorithm finds shortest• Bellman-Ford algorithm finds shortest 
paths in a graph with negative cost edges 
(or reports the existence of a negative cost 
cycle).

Bottleneck Shortest Path

• Define the bottleneck distance for a path 
to be the maximum cost edge along the 
path
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Compute the bottleneck shortest 
paths
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Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S = {};    d[s] = negative infinity;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))
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Minimum Spanning Tree

• Introduce Problem
• Demonstrate three different greedy 

algorithms
P id f th t th l ith k• Provide proofs that the algorithms work

Minimum Spanning Tree
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Greedy Algorithms for Minimum 
Spanning Tree

• Extend a tree by 
including the 
cheapest out going 
edge

• Add the cheapest
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• Add the cheapest 
edge that joins 
disjoint components

• Delete the most 
expensive edge that 
does not disconnect 
the graph
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Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest 
out going edge
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Construct the MST 
with Prim’s 
algorithm starting 
from vertex a

Label the edges in 
order of insertion

Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint 
components
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Construct the MST 
with Kruskal’s 
algorithm

Label the edges in 
order of insertion

Greedy Algorithm 3
Reverse-Delete Algorithm

• Delete the most expensive edge that does 
not disconnect the graph
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Construct the MST 
with the reverse-
delete algorithm

Label the edges in 
order of removal
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Why do the greedy algorithms 
work?

• For simplicity, assume all edge costs are 
distinct

• Let S be a subset of V, and suppose e = 
(u v) is the minimum cost edge of E with(u, v) is the minimum cost edge of E, with 
u in S and v in V-S

• e is in every minimum spanning tree

Proof 
• Suppose T is a spanning tree that does not 

contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) 

with u1 in S and v1 in V-Swith u1 in S and v1 in V S

• T1 = T – {e1} + {e} is a spanning tree with lower 
cost

• Hence, T is not a minimum spanning tree

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

Reverse-Delete Algorithm

• Lemma:  The most expensive edge on a 
cycle is never in a minimum spanning tree

Dealing with the assumption of no 
equal weight edges

• Force the edge weights to be distinct
– Add small quantities to the weights 
– Give a tie breaking rule for equal weight 

edgesedges 

Dijkstra’s Algorithm
for Minimum Spanning Trees

S = {};    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], c(v, w))
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Minimum Spanning Tree
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Undirected Graph 
G=(V,E) with edge 
weights
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Greedy Algorithms for Minimum 
Spanning Tree

• [Prim] Extend a tree by 
including the cheapest 
out going edge

• [Kruskal] Add the 
cheapest edge that joins
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cheapest edge that joins 
disjoint components

• [ReverseDelete] Delete 
the most expensive edge 
that does not disconnect 
the graph
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Why do the greedy algorithms 
work?

• For simplicity, assume all edge costs are 
distinct

Edge inclusion lemma

• Let S be a subset of V, and suppose e = 
(u, v) is the minimum cost edge of E, with 
u in S and v in V-S

• e is in every minimum spanning tree of G• e is in every minimum spanning tree of G
– Or equivalently, if e is not in T, then T is not a 

minimum spanning tree

S V - S

e

Proof 
• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S 

and v1 in V-S

e is the minimum cost edge 
between S and V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the 
MST by Prim or Kruskal, the edge is the 
minimum cost edge between S and V-S 
for some set S.
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Prim’s Algorithm

S = { };    T = { };

while S != V

choose the minimum cost edge                    
( ) ith i S d i V Se = (u,v), with u in S, and v in V-S

add e to T

add v to S

Prove Prim’s algorithm computes 
an MST 

• Show an edge e is in the MST when it is 
added to T

Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}};  T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the j
minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T

Prove Kruskal’s algorithm 
computes an MST 

• Show an edge e is in the MST when it is 
added to T

Reverse-Delete Algorithm

• Lemma:  The most expensive edge on a 
cycle is never in a minimum spanning tree

Dealing with the assumption of no 
equal weight edges

• Force the edge weights to be distinct
– Add small quantities to the weights 
– Give a tie breaking rule for equal weight 

edgesedges 
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Application: Clustering

• Given a collection of points in an r-
dimensional space, and an integer K, 
divide the points into K sets that are 
closest togetherclosest together

Distance clustering

• Divide the data set into K subsets to 
maximize the distance between any pair of 
sets

dist (S S ) = min {dist(x y) | x in S y in S }– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}

Divide into 2 clusters Divide into 3 clusters

Divide into 4 clusters Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}};  T = { }

while |C| > K

Let e = (u, v) with u in Ci and v in Cj be the j
minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj
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K-clustering


