CSE 421
Algorithms

Richard Anderson
Lecture 10-11
Minimum Spanning Trees

Shortest Paths

* Negative Cost Edges
— Dijkstra’s algorithm assumes positive cost edges

— For some applications, negative cost edges make
sense

— Shortest path not well defined if a graph has a
negative cost cycle

Negative Cost Edge Preview

» Topological Sort can be used for solving
the shortest path problem in directed
acyclic graphs

« Bellman-Ford algorithm finds shortest
paths in a graph with negative cost edges

(or reports the existence of a negative cost
cycle).

Bottleneck Shortest Path

« Define the bottleneck distance for a path

to be the maximum cost edge along the
path

Compute the bottleneck shortest
paths

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S={} d[s] = negative infinity; d[v] = infinity for v I= s
While S 1=V

Choose v in V-S with minimum d[v]

AddvtoS

For each w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))

Minimum Spanning Tree

* Introduce Problem

« Demonstrate three different greedy
algorithms

« Provide proofs that the algorithms work

Minimum Spanning Tree

Greedy Algorithms for Minimum
Spanning Tree

« Extend a tree by
including the
cheapest out going
edge

« Add the cheapest
edge that joins
disjoint components

» Delete the most
expensive edge that
does not disconnect
the graph

Greedy Algorithm 1
Prim’s Algorithm

« Extend a tree by including the cheapest
out going edge

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

Greedy Algorithm 2
Kruskal's Algorithm

« Add the cheapest edge that joins disjoint
components

Construct the MST
with Kruskal's
algorithm

Label the edges in
order of insertion

Greedy Algorithm 3
Reverse-Delete Algorithm

« Delete the most expensive edge that does
not disconnect the graph

Construct the MST
with the reverse-
delete algorithm

Label the edges in
order of removal

Why do the greedy algorithms
work?
 For simplicity, assume all edge costs are
distinct

« Let S be a subset of V, and suppose e =
(u, v) is the minimum cost edge of E, with
uinSandvinV-S

e is in every minimum spanning tree

Proof

* Suppose T is a spanning tree that does not
contain e

* Add e to T, this creates a cycle

» The cycle must have some edge e; = (u, v,)
with u; in S and v, in V-S

* T, =T—{e,} +{e} is a spanning tree with lower
cost

* Hence, T is not a minimum spanning tree

Optimality Proofs

e Prim’s Algorithm computes a MST

« Kruskal's Algorithm computes a MST

Reverse-Delete Algorithm

« Lemma: The most expensive edge on a
cycle is never in a minimum spanning tree

Dealing with the assumption of no
equal weight edges

 Force the edge weights to be distinct
— Add small quantities to the weights

— Give a tie breaking rule for equal weight
edges

Dijkstra’s Algorithm
for Minimum Spanning Trees

S={} d[s]=0; d[v]=infinity forv!=s
While S 1=V
Choose v in V-S with minimum d[v]
AddvtoS
For each w in the neighborhood of v
d[w] = min(d[w], c(v, w))

Minimum Spanning Tree

Undirected Graph
G=(V,E) with edge
15 . weights

* [Kruskal] Add the

* [ReverseDelete] Delete

Greedy Algorithms for Minimum
Spanning Tree

« [Prim] Extend a tree by

including the cheapest
out going edge

cheapest edge that joins
disjoint components

the most expensive edge
that does not disconnect
the graph

Why do the greedy algorithms
work?

 For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

« Let S be a subset of V, and suppose e =
(u, v) is the minimum cost edge of E, with
uin SandvinV-S

¢ e is in every minimum spanning tree of G

— Or equivalently, if e is notin T, then T is not a
minimum spanning tree

e is the minimum cost edge
between S and V-S

Proof

» Suppose T is a spanning tree that does not contain e
* Add e to T, this creates a cycle

* The cycle must have some edge e, = (u,, v;) with u; in S
and v, in V-S

T,=T-{e,} +{e} is a spanning tree with lower cost
Hence, T is not a minimum spanning tree

Optimality Proofs

* Prim’s Algorithm computes a MST
« Kruskal’'s Algorithm computes a MST

« Show that when an edge is added to the
MST by Prim or Kruskal, the edge is the
minimum cost edge between S and V-S
for some set S.

Prim’s Algorithm

S={} T={k
while S 1=V

choose the minimum cost edge
e =(u,v),withuin S, and vin V-S

addetoT
addvto S

Prove Prim’s algorithm computes
an MST

e Show an edge e is in the MST when it is
addedto T

Kruskal’s Algorithm

Let C={{vi}, {vo}, .. . {volh T={}
while |C| > 1

Lete = (u, v) with u in C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C;
AddetoT

Prove Kruskal's algorithm
computes an MST

« Show an edge e is in the MST when it is
addedto T

Reverse-Delete Algorithm

e Lemma: The most expensive edge on a
cycle is never in a minimum spanning tree

Dealing with the assumption of no
equal weight edges

« Force the edge weights to be distinct
— Add small quantities to the weights

— Give a tie breaking rule for equal weight
edges

Application: Clustering

» Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

Distance clustering

 Divide the data set into K subsets to
maximize the distance between any pair of

sets
—dist (S;, S,) = min {dist(x, y) | xin S;, y in S;}

Divide into 2 clusters

Divide into 3 clusters

OOO
o o o
o
o
Ooo o Oo
o o o
o
o o ©
© o
o
© o

Divide into 4 clusters

OOO
o o ©
o @)
OOO Oo
O O ¢)
¢)
O O
o o
o)

Distance Clustering Algorithm

Let C={{vi}, {vo}. . . {vi}h T={}
while |C| > K

Lete = (u, v) with uin C;and v in C; be the
minimum cost edge joining distinct sets in C

Replace C;and C; by C; U C

K-clustering

