CSE 421
Algorithms
Richard Anderson
Lecture 10-11
Minimum Spanning Trees

Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).

Shortest Paths

- Negative Cost Edges
- Dijkstra's algorithm assumes positive cost edges
- For some applications, negative cost edges make sense
- Shortest path not well defined if a graph has a negative cost cycle

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Dijkstra's Algorithm for Bottleneck Shortest Paths

```
S={}; d[s] = negative infinity; d[v] = infinity for v!= s
```

While S!= V

Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v
$d[w]=\min (d[w], \max (d[v], c(v, w)))$

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 2 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm
Label the edges in order of insertion

Minimum Spanning Tree

Greedy Algorithm 1 Prim's Algorithm

- Extend a tree by including the cheapest out going edge

Construct the MST
with Prim's
algorithm starting from vertex a
Label the edges in order of insertion

Greedy Algorithm 3 Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
- Let S be a subset of V , and suppose $\mathrm{e}=$ (u, v) is the minimum cost edge of E, with u in S and v in $V-S$
- e is in every minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

Dealing with the assumption of no

- Force the edge weights to be distinct
- Add small quantities to the weights
- Give a tie breaking rule for equal weight edges

MST

equal weight edges

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T , this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V -S
- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dijkstra's Algorithm for Minimum Spanning Trees

```
    S={}; d[s]=0; d[v] = infinity for v != s
```

 While S != V
 Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v
$d[w]=\min (d[w], c(v, w))$

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect
 the graph

Edge inclusion lemma

- Let S be a subset of V , and suppose $\mathrm{e}=$ (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G - Or equivalently, if e is not in T, then T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V -S for some set S.
- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower cost

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

- Hence, T is not a minimum spanning tree

Prove Prim's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots .,\left\{\mathrm{v}_{\mathrm{n}}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|C|>1$
Let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$
Add e to T

Prove Kruskal's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
- Add small quantities to the weights
- Give a tie breaking rule for equal weight edges

Application: Clustering

- Given a collection of points in an rdimensional space, and an integer K , divide the points into K sets that are closest together

○
○
○
○
O
$\bigcirc 0$

- 0

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(S_{1}, S_{2}\right)=\min \left\{\operatorname{dist}(x, y) \mid x\right.$ in S_{1}, y in $\left.S_{2}\right\}$
○

\circ ○

Divide into 4 clusters

o
O
○
Divide into 2 clusters

○

Distance Clustering Algorithm

Let $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{V}_{2}\right\}, \ldots,\left\{\mathrm{v}_{n}\right\} ; \mathrm{T}=\{ \}\right.$
while $|C|>K$
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C

Replace C_{i} and C_{j} by $C_{i} \cup C_{j}$

