
1

CSE 421
Algorithmsg

Richard Anderson
Lecture 10-11

Minimum Spanning Trees

Shortest Paths

• Negative Cost Edges
– Dijkstra’s algorithm assumes positive cost edges
– For some applications, negative cost edges make

sense
– Shortest path not well defined if a graph has a

negative cost cycle
a

b

cs

e

g

f

4

2

-3

6

4

-2
3

4

6

3

7

-4

Negative Cost Edge Preview

• Topological Sort can be used for solving
the shortest path problem in directed
acyclic graphs

• Bellman Ford algorithm finds shortest• Bellman-Ford algorithm finds shortest
paths in a graph with negative cost edges
(or reports the existence of a negative cost
cycle).

Bottleneck Shortest Path

• Define the bottleneck distance for a path
to be the maximum cost edge along the
path

s

v

x

u
6 5

5

3 4

2

Compute the bottleneck shortest
paths

a

e

d

4

6
6

5

4
4

a

e

d

b

c
s

e

g

f

2

-3
-2

3

7

5

3

7

b

c
s

e

g

f

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S = {}; d[s] = negative infinity; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], max(d[v], c(v, w)))

s

u

v

z

y

x

a

b

4

1

1

1

2

2
3

3

34

4
5

2

Minimum Spanning Tree

• Introduce Problem
• Demonstrate three different greedy

algorithms
P id f th t th l ith k• Provide proofs that the algorithms work

Minimum Spanning Tree

a

e
9

6

4
14

t
15

3

b

c
s

e

g

f

2

13
11

5
7

20

u

v

10

1

8

12

16

22

17

Greedy Algorithms for Minimum
Spanning Tree

• Extend a tree by
including the
cheapest out going
edge

• Add the cheapest

4

20

b c

• Add the cheapest
edge that joins
disjoint components

• Delete the most
expensive edge that
does not disconnect
the graph

115

7

20

8

22

a
d

e

Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest
out going edge

6
15

t a

9

2

13
4

11
5

7

20

14

10

1

8

12

16

22

17

3 e
c

g

f
b

s

u

v

Construct the MST
with Prim’s
algorithm starting
from vertex a

Label the edges in
order of insertion

Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint
components

6
15

t a

9

2

13
4

11
5

7

20

14

10

1

8

12

16

22

17

3 e
c

g

f
b

s

u

v

Construct the MST
with Kruskal’s
algorithm

Label the edges in
order of insertion

Greedy Algorithm 3
Reverse-Delete Algorithm

• Delete the most expensive edge that does
not disconnect the graph

6
15

t a

9

2

13
4

11
5

7

20

14

10

1

8

12

16

22

17

3 e
c

g

f
b

s

u

v

Construct the MST
with the reverse-
delete algorithm

Label the edges in
order of removal

3

Why do the greedy algorithms
work?

• For simplicity, assume all edge costs are
distinct

• Let S be a subset of V, and suppose e =
(u v) is the minimum cost edge of E with(u, v) is the minimum cost edge of E, with
u in S and v in V-S

• e is in every minimum spanning tree

Proof
• Suppose T is a spanning tree that does not

contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1)

with u1 in S and v1 in V-Swith u1 in S and v1 in V S

• T1 = T – {e1} + {e} is a spanning tree with lower
cost

• Hence, T is not a minimum spanning tree

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a
cycle is never in a minimum spanning tree

Dealing with the assumption of no
equal weight edges

• Force the edge weights to be distinct
– Add small quantities to the weights
– Give a tie breaking rule for equal weight

edgesedges

Dijkstra’s Algorithm
for Minimum Spanning Trees

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))

s

u

v

z

y

x

a

b

4

1

1

1

2

2
3

3

34

4
5

4

Minimum Spanning Tree

a

e
9

6

4
14

t
15

3

Undirected Graph
G=(V,E) with edge
weights

b

c
s

e

g

f

2

13
11

5
7

20

u

v

10

1

8

12

16

22

17

Greedy Algorithms for Minimum
Spanning Tree

• [Prim] Extend a tree by
including the cheapest
out going edge

• [Kruskal] Add the
cheapest edge that joins

4

20

b c

cheapest edge that joins
disjoint components

• [ReverseDelete] Delete
the most expensive edge
that does not disconnect
the graph

115

7

20

8

22

a
d

e

Why do the greedy algorithms
work?

• For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

• Let S be a subset of V, and suppose e =
(u, v) is the minimum cost edge of E, with
u in S and v in V-S

• e is in every minimum spanning tree of G• e is in every minimum spanning tree of G
– Or equivalently, if e is not in T, then T is not a

minimum spanning tree

S V - S

e

Proof
• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S

and v1 in V-S

e is the minimum cost edge
between S and V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the
MST by Prim or Kruskal, the edge is the
minimum cost edge between S and V-S
for some set S.

5

Prim’s Algorithm

S = { }; T = { };

while S != V

choose the minimum cost edge
() ith i S d i V Se = (u,v), with u in S, and v in V-S

add e to T

add v to S

Prove Prim’s algorithm computes
an MST

• Show an edge e is in the MST when it is
added to T

Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}}; T = { }

while |C| > 1

Let e = (u, v) with u in Ci and v in Cj be the j
minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

Add e to T

Prove Kruskal’s algorithm
computes an MST

• Show an edge e is in the MST when it is
added to T

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a
cycle is never in a minimum spanning tree

Dealing with the assumption of no
equal weight edges

• Force the edge weights to be distinct
– Add small quantities to the weights
– Give a tie breaking rule for equal weight

edgesedges

6

Application: Clustering

• Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest togetherclosest together

Distance clustering

• Divide the data set into K subsets to
maximize the distance between any pair of
sets

dist (S S) = min {dist(x y) | x in S y in S }– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}

Divide into 2 clusters Divide into 3 clusters

Divide into 4 clusters Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}}; T = { }

while |C| > K

Let e = (u, v) with u in Ci and v in Cj be the j
minimum cost edge joining distinct sets in C

Replace Ci and Cj by Ci U Cj

7

K-clustering

