
1

CSE 421
Algorithmsg

Richard Anderson
Lecture 7

Greedy Algorithms

Greedy Algorithms

• Solve problems with the simplest possible
algorithm

• The hard part: showing that something
simple actually workssimple actually works

• Pseudo-definition
– An algorithm is Greedy if it builds its solution

by adding elements one at a time using a
simple rule

Scheduling Theory

• Tasks
– Processing requirements, release times,

deadlines
• Processors• Processors
• Precedence constraints
• Objective function

– Jobs scheduled, lateness, total execution time

• Tasks occur at fixed times
• Single processor
• Maximize number of tasks completed

Interval Scheduling

• Tasks {1, 2, . . . N}
• Start and finish times, s(i), f(i)

What is the largest solution? Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A
is the rule determining the greedy algorithm

I = { }

While (T is not empty)While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T

2

Simulate the greedy algorithm for
each of these heuristics

Schedule earliest starting task

Schedule shortest available taskSchedule shortest available task

Schedule task with fewest conflicting tasks

Greedy solution based on earliest
finishing time

Example 1

Example 2Example 2

Example 3

Theorem: Earliest Finish Algorithm
is Optimal

• Key idea: Earliest Finish Algorithm stays
ahead

• Let A = {i1, . . ., ik} be the set of tasks found
by EFA in increasing order of finish timesby EFA in increasing order of finish times

• Let B = {j1, . . ., jm} be the set of tasks
found by a different algorithm in increasing
order of finish times

• Show that for r<= min(k, m), f(ir) <= f(jr)

Stay ahead lemma

• A always stays ahead of B, f(ir) <= f(jr)
• Induction argument

– f(i1) <= f(j1)
If f(i) f(j) th f(i) f(j)– If f(ir-1) <= f(jr-1) then f(ir) <= f(jr)

Completing the proof
• Let A = {i1, . . ., ik} be the set of tasks found by

EFA in increasing order of finish times
• Let O = {j1, . . ., jm} be the set of tasks found by

an optimal algorithm in increasing order of finish
times

• If k < m, then the Earliest Finish Algorithm
stopped before it ran out of tasks

Scheduling all intervals

• Minimize number of processors to
schedule all intervals

3

How many processors are needed
for this example?

Prove that you cannot schedule this set
of intervals with two processors

Depth: maximum number of
intervals active Algorithm

• Sort by start times
• Suppose maximum depth is d, create d

slots
S h d l it i i i d i• Schedule items in increasing order, assign
each item to an open slot

• Correctness proof: When we reach an
item, we always have an open slot

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal minimize maximum lateness
– Lateness = fi – di if fi >= di

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

4

Determine the minimum lateness

2

3

4

6

4

5

DeadlineTime

4

5

5

12

To be continued . . .

