
1/15/2009

1

CSE 421
Algorithmsg

Richard Anderson
Winter 2009

Lecture 6

Announcements

• Monday,  January 19 – Holiday
• Reading

– 4.1 – 4.3,  Important material

Lecture Summary 
Bipartite Graphs and Two Coloring

• Algorithm
– Run BFS
– Color odd layers red, even layers blue
– If no edges between the same layer, the graph is bipartite
– If edge between two vertices of the same layer, then there 

is an odd cycle and the graph is not bipartiteis an odd cycle, and the graph is not bipartite
• Theorem

– A graph is bipartite if and only if it has no odd cycles

Graph Search

• Data structure for next vertex to visit 
determines search order

Breadth First Search

• All edges go between vertices on the 
same layer or adjacent layers

1

2

8

3

7654

1

Depth First Search

• Each edge goes 
between vertices on the 
same branch

• No cross edges

1

2 6

123• No cross edges

5

12743

8 9

10 11



1/15/2009

2

Connected Components

• Undirected Graphs

Computing Connected 
Components in O(n+m) time

• A search algorithm from a vertex v can find 
all vertices in v’s component

• While there is an unvisited vertex v, search 
from v to find a new componentfrom v to find a new component

Directed Graphs

• A Strongly Connected Component is a 
subset of the vertices with paths between 
every pair of vertices.

Identify the Strongly Connected 
Components

Strongly connected components 
can be found in O(n+m) time

• But it’s tricky!
• Simpler problem: given a vertex v, compute the 

vertices in v’s scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks

321 322 401

142 143 341

370 378

326 421

431



1/15/2009

3

Find a topological order for the 
following graph

E
A

H I

F

D

C

B
K

JG

L

If a graph has a cycle, there is no 
topological sort

• Consider the first 
vertex on the cycle in 
the topological sort

• It must have an 

A F

incoming edge B

D

E

C

Lemma: If a graph is acyclic, it has 
a vertex with in degree 0

• Proof:  
– Pick a vertex v1, if it has in-degree 0 then 

done
– If not let (v2 v1) be an edge if v2 has in-If not, let (v2, v1) be an edge, if v2 has in-

degree 0 then done
– If not, let (v3, v2) be an edge . . .
– If this process continues for more than n 

steps, we have a repeated vertex, so we have 
a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

E
H

IE

F

D

A

C

B
K

J
G

I

L

Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0
• Each vertex keeps track of its in-degree
• Update in-degrees and list when edges 

dare removed
• m edge removals at O(1) cost each

Large Graphs

• Examples of large (real world graphs)

• What would you compute?

• What are the programming 
considerations?


