CSE 421 Algorithms

Richard Anderson Winter 2009 Lecture 5

Announcements

- Reading
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- Homework 2 Available

Graph Theory

- G = (V, E)
 - V verticesE edges
- Undirected graphs
 - Edges sets of two vertices {u, v}
- · Directed graphs
 - Edges ordered pairs (u, v)
- · Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- • Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E Simple Path

 - Cycle
 - Simple Cycle
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph search

• Find a path from s to t

 $S = \{s\}$ While there exists (u, v) in E with u in S and v not in S Pred[v] = u Add v to S if (v = t) then path found

Breadth first search

- · Explore vertices in layers
 - -s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Key observation

 All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V₁, V₂ such that all edges go between V₁ and V₂
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

 If a graph contains an odd cycle, it is not bipartite

Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is bipartite

Connected Components

• Undirected Graphs

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Topological Sort

 Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
 - Pick a vertex v₁, if it has in-degree 0 then done
 - If not, let (v₂, v₁) be an edge, if v₂ has indegree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v
Delete the vertex v and all out going edges

H

G

K

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each