CSE 421
Algorithms
Richard Anderson
Winter 2009
Lecture 5

Announcements

- Reading
- Chapter 3 (Mostly review)
- Start on Chapter 4
- Homework 2 Available

Graph Theory

- $G=(V, E)$
- V - vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{\mathrm{u}, \mathrm{v}\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E - Simple Path
- Cycle
- Simple Cycle
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph search

- Find a path from s to t

$$
\mathrm{S}=\{\mathrm{s}\}
$$

While there exists (u, v) in E with u in S and v not in S
$\operatorname{Pred}[\mathrm{v}]=\mathrm{u}$
Add v to S
if $(v=t)$ then path found

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 . . .

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_{1}, V_{2} such that all edges $g o$ between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Computing Connected

Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Strongly connected components

 can be found in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time- But it's tricky!
- Simpler problem: given a vertex v , compute the vertices in v's scc in $O(n+m)$ time

Find a topological order for the following graph

Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let $\left(v_{2}, v_{1}\right)$ be an edge, if v_{2} has indegree 0 then done
- If not, let $\left(v_{3}, v_{2}\right)$ be an edge \ldots
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v
Delete the vertex v and all out going edges

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

