CSE 421
Algorithms

Richard Anderson
Winter 2009
Lecture 4

1/13/2009

Announcements

¢ Reading
— Chapter 2.1, 2.2
— Chapter 3 (Mostly review)
— Start on Chapter 4
¢ Homework Guidelines
— Prove that your algorithm works
« A proof is a “convincing argument”
— Give the run time for you algorithm
« Justify that the algorithm satisfies the runtime bound
— You may lose points for style

What does it mean for an algorithm
to be efficient?

Definitions of efficiency

« Fast in practice

« Qualitatively better worst case
performance than a brute force algorithm

Polynomial time efficiency

 An algorithm is efficient if it has a
polynomial run time

* Run time as a function of problem size

— Run time: count number of instructions
executed on an underlying model of
computation

—T(n): maximum run time for all problems of
size at most n

Polynomial Time

* Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor
(depending on the algorithm)




1/13/2009

Why Polynomial Time? Polynomial vs. Exponential

Complexity
» Generally, polynomial time seems to » Suppose you have an a_Igorithm which takes n!
capture the algorithms which are efficient steps on a problem of size n
in practice « If the algorithm takes one second for a problem

of size 10, estimate the run time for the following

problems sizes:
» The class of polynomial time algorithms

has many good, mathematical properties 12 14 16 18 20
Ignoring constant factors Why ignore constant factors?
« Express run time as O(f(n)) « Constant factors are arbitrary
» Emphasize algorithms with slower growth — Depend on the implementation
rates — Depend on the details of the model
« Fundamental idea in the study of
algorithms < Determining the constant factors is tedious
« Basis of Tarjan/Hopcroft Turing Award and provides little insight
Why emphasize growth rates? Formalizing growth rates
* The algorithm with the lower growth rate * T(n) is O(f(n)) [T:Z" 2 RY]
will be faster for all but a finite number of —If n is sufficiently large, T(n) is bounded by a
cases . . constant multiple of f(n)
» Performance is most important for larger — Exist ¢, ny, such that for n > n,, T(n) < ¢ f(n)
problem size
» As memory prices continue to fall, bigger . . :
problem siggs become feasible % * T(n) is O(f(n)) will be written as:
« Improving growth rate often requires new T(n) = O(f(n)). ) )
techniques — Be careful with this notation




Prove 3n? + 5n + 20 is O(n?)

Letc =

Letng =

T(n) is O(f(n)) if there exist ¢, ny, such that for n > n,
T(n) < cf(n)

1/13/2009

Order the following functions in

increasing order by their growth rate

a) nlog*n

b) 2n2 +10n

c) 20100

d) 1000n + log® n
e) nlOO

f) 3

g) 1000 log'®n
h) n1/2

Lower bounds

e T(n) is Q(f(n))
—T(n) is at least a constant multiple of f(n)
— There exists an n,, and ¢ > 0 such that
T(n) > &f(n) for all n > n,
* Warning: definitions of Q vary

e T(n) is ©(f(n)) if T(n) is O(f(n)) and
T(n) is Q(f(n))

Useful Theorems

e Iflim (f(n) / g(n)) = ¢ for c > 0 then
f(n) = ©(g(n))

« If f(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) is O(h(n))

« If f(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))

Ordering growth rates

* Forb>1and x>0
—logbn is O(n¥)

e Forr>1andd>0
—ndis O(r")




