CSE 421 Algorithms

Richard Anderson Winter 2009 Lecture 4

Announcements

Reading

- Chapter 2.1, 2.2
- Chapter 3 (Mostly review)
- Start on Chapter 4
- Homework Guidelines
 - Prove that your algorithm works
 - A proof is a "convincing argument"
 - Give the run time for you algorithm
 Justify that the algorithm satisfies the runtime bound
- You may lose points for style

What does it mean for an algorithm to be efficient?

Definitions of efficiency

- · Fast in practice
- Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
 - Run time: count number of instructions executed on an underlying model of computation
 - T(n): maximum run time for all problems of size at most n

Polynomial Time

 Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes n! steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

Ignoring constant factors

- Express run time as O(f(n))
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- Constant factors are arbitrary
- Depend on the implementation
- Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- T(n) is O(f(n)) [T : Z⁺ → R⁺]
 If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is O(f(n)) will be written as:
 T(n) = O(f(n))
 - Be careful with this notation

Prove $3n^2 + 5n + 20$ is O(n²)

Let c =

Let $n_0 =$

T(n) is O(f(n)) if there exist c, $n_0,$ such that for $n > n_0,$ $T(n) < c \; f(n)$

Order the following functions in increasing order by their growth rate

- a) n log⁴n
- b) 2n² + 10n
- c) 2^{n/100}
- d) 1000n + log⁸ n
- e) n¹⁰⁰
- f) 3ⁿ
- g) 1000 log10n
- h) n^{1/2}

Lower bounds

- T(n) is Ω(f(n))
 - -T(n) is at least a constant multiple of f(n)
 - There exists an n_0 , and $\varepsilon > 0$ such that
 - $T(n) > \varepsilon f(n)$ for all $n > n_0$
- Warning: definitions of $\boldsymbol{\Omega}$ vary
- T(n) is $\Theta(f(n))$ if T(n) is O(f(n)) and T(n) is $\Omega(f(n))$

Useful Theorems

- If $\lim (f(n) / g(n)) = c$ for c > 0 then $f(n) = \Theta(g(n))$
- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))
- If f(n) is O(h(n)) and g(n) is O(h(n)) then f(n) + g(n) is O(h(n))

Ordering growth rates

- For b > 1 and x > 0

 log^bn is O(n^x)
- For r > 1 and d > 0- n^d is $O(r^n)$