Five Problems

CSE 421
Richard Anderson
Winter 2009, Lecture 3

Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Facility Location

Theory of Algorithms

- What is expertise?
- How do experts differ from novices?

What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value

Problem: Scheduling

- Suppose that you own a banquet hall
- You have a series of requests for use of the hall: $\left(s_{1}, f_{1}\right),\left(s_{2}, f_{2}\right), \ldots$

- Find a set of requests as large as possible with no overlap

What is the largest solution?

Greedy Algorithm

- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works

Greedy Algorithms

- Earliest finish time
- Maximum value
- Give counter examples to show these algorithms don't find the maximum value solution

Suppose we add values?

- $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)$, start time, finish time, payment
- Maximize value of elements in the solution

Dynamic Programming

- Requests $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \ldots$
- Assume requests are in increasing order of finish time ($f_{1}<f_{2}<f_{3} \ldots$)
- Opt is the maximum value solution of $\left\{R_{1}, R_{2}, \ldots, R_{i}\right\}$ containing R_{i}
- Opt $_{\mathrm{i}}=\operatorname{Max}\left\{\mathrm{j} \mid \mathrm{f}_{\mathrm{j}}<\mathrm{s}_{\mathrm{i}}\right\}\left[O \mathrm{Opt}_{\mathrm{j}}+\mathrm{v}_{\mathrm{i}}\right]$

Find a maximum matching

Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem

Maximum Independent Set

- Given an undirected graph $G=(V, E)$, find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Verification: Prove the graph has an independent set of size 8

Key characteristic

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
- Hamiltonian circuit
- Clique
- Subset sum
- Graph coloring

NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- Very elegant theory

Competitive Facility Location

- Choose location for a facility
- Value associated with placement
- Restriction on placing facilities too close together
- Competitive

Complexity theory

- These problems are P-Space complete instead of NP-Complete
- Appear to be much harder
- No obvious certificate
- G has a Maximum Independent Set of size 10
- Player 1 wins by at least 10 points
- Player 1 wins by ateast 10 poits

Are there even harder problems?

- Simple game:
- Players alternating selecting nodes in a graph
- Score points associated with node
- Remove nodes neighbors
- When neither can move, player with most points wins

- Different companies place facilities
- E.g., KFC and McDonald's

Summary

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling

