CSE 421 Algorithms

Richard Anderson Winter 2009 Lecture 1

CSE 421 Course Introduction

- CSE 421, Introduction to Algorithms
 - MWF, 1:30-2:20 pm
 - EEB 037
- Instructor
 - Richard Anderson, anderson@cs.washington.edu

 - Office hours:
 CSE 582
 Monday, 3:00-3:50 pm, Thursday, 11:00-11:50 am
- Teaching Assistant
 - Aeron Bryce, <u>paradoxa@cs.washington.edu</u>
 - Office hours:

 - CSE 216Monday, 12:30-1:20 pm, Tuesday, 12:30-1:20 pm

Announcements

- It's on the web.
- Homework due Wednesdays
 - HW 1, Due January 14, 2009
 - It's on the web (or will be soon)
- · Subscribe to the mailing list

Text book

- · Algorithm Design
- Jon Kleinberg, Eva Tardos
- Read Chapters 1 & 2
- Expected coverage:
 - Chapter 1 through 7

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems + E.C.
- Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Monday, Feb 9 (probably)
 - Final, Monday, March 16, 2:30-4:20 pm
- · Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
- · Course web
 - Slides, Handouts, Recorded Lectures from 2006

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- Mine is faster than yours is
- · Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- · Perfect matching
- Ranked preference lists
- Stability

Example (1 of 3)

Example (2 of 3)

Example (3 of 3)

Formal Problem

- Input
 - Preference lists for m₁, m₂, ..., m_n
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property:

If $(m', w') \in M$ and $(m'', w'') \in M$ then (m') prefers w' to w'') or (w'') prefers m'' to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m_2 w accepts m, dumping m_2 If w prefers m_2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

Example

	•	
m ₁ : w ₁ w ₂ w ₃	$m_1 \bigcirc$	\bigcirc W ₁
m ₂ : w ₁ w ₃ w ₂		
m ₃ : w ₁ w ₂ w ₃		
	$m_2 \bigcirc$	\bigcirc W ₂
w ₁ : m ₂ m ₃ m ₁		
w_2 : $m_3 m_1 m_2$		
w_3 : $m_3 m_1 m_2$	m_3 \bigcirc	\bigcirc W ₃

Does this work?

- · Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$$(m_1, w_1) \in M$$
, $(m_2, w_2) \in M$
 m_1 prefers w_2 to w_1

How could this happen?

Result

- Simple, O(n2) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

 m_1 : w_1 w_2 w_3

 W_1 : M_2 M_3 M_1 w_2 : m_3 m_1 m_2

w₃: m₁ m₂ m₃

low many stable matchings can you find?

Algorithm under specified

- · Many different ways of picking m's to propose
- · Surprising result
 - All orderings of picking free m's give the same result
- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores
 - Show property of the solution so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:

(m, w) is valid if (m, w) is in some stable matching

best(m): the highest ranked w for m such that (m, w) is valid

 $S^* = \{(m, best(m))\}$

Every execution of the proposal algorithm computes S*

Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W
Algorithm is the M-optimal algorithm

Proposal algorithms where w's propose is W-Optimal

Best choices for one side may be bad for the other

Design a configuration for problem of size 4: m₂:

M proposal algorithm: m₃:
All m's get first choice, all w's get last choice
W proposal algorithm:
All w's get first choice, all m's get last choice
W₂:

w₃: w₄:

But there is a stable second choice

m₁: Design a configuration for problem of size 4: m_2 : M proposal algorithm: m₃: All m's get first choice, all w's get last choice W proposal algorithm: All w's get first choice, all m's w₁: get last choice There is a stable matching where everyone gets their second choice W_3 : W₄:

Key ideas

- · Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution