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CSE 421
Algorithmsg

Richard Anderson   
Winter 2009

Lecture 1

CSE 421 Course Introduction
• CSE 421, Introduction to Algorithms

– MWF, 1:30-2:20 pm
– EEB 037

• Instructor
– Richard Anderson, anderson@cs.washington.edu
– Office hours: 

• CSE 582
• Monday, 3:00-3:50 pm,  Thursday, 11:00-11:50 am

• Teaching Assistant 
– Aeron Bryce,  paradoxa@cs.washington.edu
– Office hours: 

• CSE 216
• Monday, 12:30-1:20 pm,  Tuesday, 12:30-1:20 pm

Announcements

• It’s on the web.
• Homework  due Wednesdays

– HW 1, Due January 14, 2009
It’ th b ( ill b )– It’s on the web (or will be soon)

• Subscribe to the mailing list

Text book

• Algorithm Design
• Jon Kleinberg, Eva Tardos

• Read Chapters 1 & 2

• Expected coverage:
– Chapter 1 through 7

Course Mechanics
• Homework

– Due Wednesdays
– About 5 problems + E.C.
– Target: 1 week turnaround on grading

• Exams (In class)( )
– Midterm,  Monday,  Feb 9 (probably)
– Final, Monday, March 16, 2:30-4:20 pm

• Approximate grade weighting
– HW: 50, MT: 15, Final: 35

• Course web
– Slides, Handouts, Recorded Lectures from 2006

All of Computer Science is the 
Study of Algorithms
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How to study algorithms

• Zoology
• Mine is faster than yours is
• Algorithmic ideas

– Where algorithms apply
– What makes an algorithm work
– Algorithmic thinking

Introductory Problem:
Stable Matching

• Setting:
– Assign TAs to Instructors
– Avoid having TAs and Instructors wanting 

changeschanges
• E.g., Prof A. would rather have student X than her 

current TA, and student X would rather work for 
Prof A. than his current instructor.

Formal notions

• Perfect matching
• Ranked preference lists
• Stability

m1 w1

m2 w2

Example  (1 of 3)

m1: w1 w2

m2: w2 w1

w1: m1 m2

m1 w1

w2: m2 m1 m2 w2

Example  (2 of 3)

m1: w1 w2

m2: w1 w2

w1: m1 m2

m1 w1

w2: m1 m2 m2 w2

Example  (3 of 3)

m1: w1 w2

m2: w2 w1

w1: m2 m1

m1 w1

w2: m1 m2 m2 w2
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Formal Problem

• Input
– Preference lists for m1, m2, …, mn

– Preference lists for w1, w2, …, wn

O t t• Output
– Perfect matching M satisfying stability 

property:
If (m’, w’) ∈ M and (m’’, w’’) ∈ M then

(m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’)

Idea for an Algorithm

m proposes to w
If w is unmatched, w accepts
If w is matched to m2

If w prefers m to m w accepts m dumping mIf w prefers m to m2 w accepts m, dumping m2

If w prefers m2 to m, w rejects m

Unmatched m proposes to the highest w on 
its preference list that it has not already 
proposed to

Algorithm

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
elseelse 

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

m1 w1

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m2 w2

m3 w3

Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and 
measures of progress
– m’s proposals get worse (have higher m-rank)
– Once w is matched, w stays matched
– w’s partners get better (have lower w-rank)

Claim: The algorithm stops in at 
most n2 steps



1/5/2009

4

When the algorithms halts, every w 
is matched

Why?

Hence, the algorithm finds a perfect 
matching

The resulting matching is stable

Suppose
(m1, w1) ∈ M, (m2, w2) ∈ M
m1 prefers w2 to w1

m1 w1

m2 w2

How could this happen?

Result

• Simple, O(n2) algorithm to compute a 
stable matching

• Corollary
A t bl t hi l i t– A stable matching always exists

A closer look

Stable matchings are not necessarily fair

m1:    w1 w2 w3
m1 w1

m2:    w2 w3 w1

m3:    w3 w1 w2

w1:   m2 m3 m1

w2:   m3 m1 m2

w3:   m1 m2 m3

m2

m3

w2

w3

How many stable matchings can you find?

Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result

– All orderings of picking free m’s give the same result

• Proving this type of result
– Reordering argument
– Prove algorithm is computing something mores 

specific
• Show property of the solution – so it computes a specific 

stable matching

Proposal Algorithm finds the best 
possible solution for M

Formalize the notion of best possible solution:
(m, w) is valid if (m, w) is in some stable 
matching
best(m): the highest ranked w for m such thatbest(m): the highest ranked w for m such that 
(m, w) is valid
S* = {(m, best(m)}
Every execution of the proposal algorithm 
computes S*
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Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the 
t f Wworst case for W

Algorithm is the M-optimal algorithm
Proposal algorithms where w’s propose is 

W-Optimal

Best choices for one side may be 
bad for the other

Design a configuration for 
problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s 
get last choice

m1:

m2:

m3:

get last choice

W proposal algorithm:
All w’s get first choice, all m’s 
get last choice

m4:

w1:

w2:

w3:

w4:

But there is a stable second choice

Design a configuration for 
problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s 
get last choice

m1:

m2:

m3:

get last choice

W proposal algorithm:
All w’s get first choice, all m’s 
get last choice

There is a stable matching 
where everyone gets their 
second choice

m4:

w1:

w2:

w3:

w4:

Key ideas
• Formalizing real world problem

– Model: graph and preference lists
– Mechanism: stability condition

• Specification of algorithm with a natural 
operationoperation
– Proposal

• Establishing termination of process through 
invariants and progress measure

• Under specification of algorithm
• Establishing uniqueness of solution


