Name:

CSE 421 Final Exam March 13, 2007

Instructions:

- You have 1 hour and 50 minutes to complete the exam.
- Feel free to ask for clarification if something is unclear.
- Please do not turn the page until you are instructed to do so.
- The exam is open book, open notes.
- Good luck!

1	/14
2	/ 6
3	/12
4	/15
5	/15
6	/13
total	/75

- 1. (14 points, 2 points for each correct answer, -2 points for each incorrect answer) Indicate for each of the following if it is **true or false** by circling the appropriate answer.
 - True or False: You are given a vector (a_1, a_2, \ldots, a_n) . You are also given the recurrence $f(i) = \min_{1 \le j < i} (j + a_j + f(j))$, and you are told f(1) = 0. Then dynamic programming allows you to calculate f(n) in time O(n).
 - True or False: Consider the problem of shortest paths in a graph G where edges can have negative weights. Recall that we defined Opt(i, v) to be the length of the shortest path from v to t that uses at most i edges. Suppose that there is a some vertex w such that $Opt(n, w) \neq Opt(n - 1, w)$ (where n is the number of nodes in the graph). Then G has a negative cycle.
 - True or False: Same setup as previous question. Suppose that Opt(1, v) = Opt(2, v) for all v (in a graph where there are n > 2 vertices). Then G has no negative cycle from which t can be reached.
 - True or False: We know of a problem in \mathcal{NP} that is also in \mathcal{P} .
 - True or False Suppose that X and Y are both in \mathcal{P} . Then there is a polytime reduction from X to Y.
 - True or False: Suppose that $X \leq_{\mathcal{P}} Y$, X is NP-complete and $Y \in \mathcal{NP}$. Then $Y \leq_{\mathcal{P}} X$.
 - True or False: Suppose that X and Y are both in \mathcal{NP} , and that $SAT \leq_{\mathcal{P}} X$ and $SAT \leq_{\mathcal{P}} Y$. Then $X \leq_{\mathcal{P}} Y$.

- 2. (6 points, 2 points for each correct answer, -2 points for each incorrect answer) Indicate for each of the following if it is **true or false** by circling the appropriate answer. In all of the following, you are given an s-t flow network G, where c(u, v) is the capacity of edge (u, v).
 - True or False: Let f be a maximum flow in G, where f(u, v) is the flow on edge (u, v). Let (A_1, B_1) and (A_2, B_2) be two different minimum s-t cuts. Then $\sum_{u \in A_1, v \in B_1} f(u, v) = \sum_{u \in A_2, v \in B_2} c(u, v)$. (Pay close attention to the subscripts.)
 - True or False: Let f be a maximum flow in G. Let (A_1, B_1) and (A_2, B_2) be two different minimum s-t cuts. Then $\sum_{u \in B_1, v \in A_1} f(u, v) = \sum_{u \in B_2, v \in A_2} f(u, v)$. (Pay close attention to the subscripts.)
 - True or False: Let f be a maximum flow in G. Let (A_1, B_1) and (A_2, B_2) be two different minimum s-t cuts. Then $\sum_{u \in A_1, v \in B_1} f(u, v) - \sum_{u \in A_1, v \in B_1} c(u, v) = \sum_{u \in B_2, v \in A_2} f(u, v)$. (Pay close attention to the subscripts.)

3. (12 points, 4 points each) Consider a recursive divide and conquer algorithm that satisfies the following recurrence on its running time:

$$T(n) = 4T(n/3) + n,$$

with T(1) = 1. In the following you may assume that n is a power of 3.

- How many subproblems are there at depth k in the recursion tree? (The number of subproblems at depth 0, namely at the root of the tree, is 1.)
- What is the size of each subproblem at depth k of the recursion tree? (The size of the subproblem at depth 0, namely at the root of the tree, is n).
- What is the running time T(n) of this algorithm. Express it in big Oh notation as $O(n^a)$ for an appropriate choice of the value a.
- 4. (15 points, 5 points each) Recall the knapsack problem: We are given n items and a "knapsack". The knapsack can carry a weight up to W. (Assume W is an integer.) Each item i has an integer value v_i and an integer weight $0 < w_i < W$. The goal is to choose a subset S of the items to fill the knapsack with so that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximized. Let V^* be the optimum value, i.e. $V^* = \sum_{i \in S^*} v_i$ for the optimal subset S^* .

In Section 6.4, one dynamic programming approach to this problem is given. Here we explore another.

Define OPT(i, v) to be the weight of the minimum weight subset of items $1 \dots i$ that yields a total value of exactly v. We get a subproblem for each $0 \leq i \leq n$ and each integer v such that $0 \leq v \leq V = \sum_{1 \leq i \leq n} v_i$. (You can define $OPT(i, v) = \infty$ if there is no subset of $1 \dots i$ that yields value exactly v.)

- Write a recurrence for OPT(i, v). Be sure to also specify the base cases (OPT(0, v) and OPT(i, 0)).
- Given the values of OPT(i, v) for $0 \le i \le n$ and $0 \le v \le V = \sum_{1 \le i \le n} v_i$, how would you compute V^* ?
- What is the running time of this dynamic programming procedure for computing V^* ? Include the time to compute the values of OPT(i, v) for all $0 \le i \le n$ and $0 \le v \le V$. Your answer should be expressed in terms of n and $V = \sum_{1 \le i \le n} v_i$. No need to give the algorithm, just the running time.
- 5. (15 points, 5 points each) Consider the following network, with edge capacities as shown.

- (a) What is the value of the maximum flow in the network? I'm just interested in the single number $\nu(f^*)$.
- (b) Give a minimum cut in this network. (Specify which nodes are on the s side of the cut.)
- (c) Is there more than one minimum cut in this network? If so, specify which nodes are on the s side of a minimum cut different from the one you gave in part (b).
- 6. (13 points) Prove that the following problem, called MAXSAT, is NP-complete. Given a 3-CNF formula Φ and an integer g, is there a truth assignment that satisfies at least g clauses?