
1

1

CSE 421: Introduction to

Algorithms

Graph Traversal

Paul Beame

2

Undirected Graph G = (V,E)

1

2
10

9

8

3

4

5

6

7

11
12

13

3

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5

6

7

11
12

13

4

Graph Traversal

� Learn the basic structure of a graph
� Walk from a fixed starting vertex s to

find all vertices reachable from s

� Three states of vertices
� unvisited
� visited/discovered
� fully-explored

5

Generic Graph Traversal Algorithm

Find: set R of vertices reachable from s∈∈∈∈V

Reachable(s):

R←←←← {s}
While there is a (u,v)∈∈∈∈E where u∈∈∈∈R and v∉∉∉∉R

Add v to R

6

Generic Traversal Always Works

� Claim: At termination R is the set of nodes
reachable from s

� Proof
� ⊆: For every node v∈∈∈∈R there is a path from s to v
� ⊇: Suppose there is a node w∉∉∉∉R reachable from s

via a path P
� Take first node v on P such that v∉∉∉∉R
� Predecessor u of v in P satisfies

� u ∈∈∈∈ R
� (u,v) ∈∈∈∈E

� But this contradicts the fact that the algorithm
exited the while loop.

2

7

Breadth-First Search

� Completely explore the vertices in order
of their distance from s

� Naturally implemented using a queue

8

BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s)

mark s “visited”; R←{s}; layer L0←{s}
while L i not empty

L i+1 ←←←← ∅∅∅∅
For each u∈∈∈∈L i

for each edge {u,v}
if (v is “unvisited”)

mark v “visited”
Add v to set R and to layer L i+1

mark u “fully-explored”
i ←←←← i+1

9

Properties of BFS (v)

� BFS(s) visits x if and only if there is a path in G from
s to x.

� Edges followed to undiscovered vertices define a
“breadth first spanning tree" of G

� Layer i in this tree, L i

� those vertices u such that the shortest path in G
from the root s is of length i.

� On undirected graphs
� All non-tree edges join vertices on the same or

adjacent layers

10

Properties of BFS

� On undirected graphs
� All non-tree edges join vertices on the

same or adjacent layers

� Suppose not
� Then there would be vertices (x,y) such that

x∈∈∈∈L i and y∈∈∈∈L j and j>>>>i+1
� Then, when vertices incident to x are

considered in BFS y would be added to L i+1
and not to L j

11

BFS Application: Shortest Paths

1

2
3

10

5

4

9

12

8

13

6
7

11

0

1

2

3

4
can label by distances from start

Tree gives shortest
paths from start vertex

12

Graph Search Application:
Connected Components

� Want to answer questions of the
form:
� Given: vertices u and v in G
� Is there a path from u to v?

� Idea: create array A such that
A[u] = smallest numbered vertex

that is connected to u
� question reduces to whether A[u]=A[v]?

Q: Why
not create
an array
Path [u,v]?

3

13

Graph Search Application:
Connected Components

� initial state: all v unvisited
for s←1 to n do

if state(s) ≠ “fully-explored” then
BFS(s): setting A[u] ←s for each u found

(and marking u visited/fully-explored)
endif

endfor

� Total cost: O(n+m)
� each vertex is touched once in this outer

procedure and the edges examined in the different
BFS runs are disjoint

� works also with Depth First Search

14

DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"
DFS(u)

mark u “visited” and add u to R
for each edge {u,v}

if (v is “unvisited”)
DFS(v)

end for
mark u “fully-explored”

15

Properties of DFS(s)

� Like BFS(s):
� DFS(s) visits x if and only if there is a path in G

from s to x
� Edges into undiscovered vertices define a "depth

first spanning tree" of G

� Unlike the BFS tree:
� the DFS spanning tree isn't minimum depth
� its levels don't reflect min distance from the root
� non-tree edges never join vertices on the same or

adjacent levels

� BUT…

16

Non-tree edges

� All non-tree edges join a vertex and one
of its descendents/ancestors in the DFS
tree

� No cross edges.

17

No cross edges in DFS on undirected
graphs

� Claim: During DFS(x) every vertex marked visited is
a descendant of x in the DFS tree T

� Claim: For every x,y in the DFS tree T, if (x,y) is an
edge not in T then one of x or y is an ancestor of the
other in T

� Proof:
� One of x or y is visited first, suppose WLOG that x is visited

first and therefore DFS(x) was called before DFS(y)
� During DFS(x), the edge (x,y) is examined

� Since (x,y) is a not an edge of T, y was visited when the
edge (x,y) was examined during DFS(x)

� Therefore y was visited during the call to DFS(x) so y is a
descendant of x.

18

Applications of Graph Traversal:
Bipartiteness Testing

� Easy: A graph G is not bipartite if it contains
an odd length cycle

� WLOG: G is connected
� Otherwise run on each component

� Simple idea: start coloring nodes starting at a
given node s
� Color s red
� Color all neighbors of s blue
� Color all their neighbors red
� If you ever hit a node that was already colored

� the same color as you want to color it, ignore it
� the opposite color, output error

4

19

BFS gives Bipartiteness

� Run BFS assigning all vertices from
layer L i the color i mod 2
� i.e. red if they are in an even layer, blue if

in an odd layer

� If there is an edge joining two vertices
from the same layer then output “Not
Bipartite”

20

Why does it work?

s

L i

L jL j

u v

u and v have a common ancestor

Cycle length 2(j-i)+1

21

DFS(v) for a directed graph

1

2
10

9

8

3

4

5

6

7

11
12

13

22

DFS(v)

1

2
10

9

8

3

4

5

6

7

11
12

13

tree edges

back edges

forward
edges

← cross edges

NO → cross edges

23

Properties of Directed DFS

� Before DFS(s) returns, it visits all
previously unvisited vertices reachable
via directed paths from s

� Every cycle contains a back edge in the
DFS tree

24

Directed Acyclic Graphs

� A directed graph G=(V,E) is acyclic if it
has no directed cycles

� Terminology: A directed acyclic graph is
also called a DAG

5

25

Topological Sort

� Given: a directed acyclic graph (DAG) G=(V,E)
� Output: numbering of the vertices of G with

distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

� Applications
� nodes represent tasks
� edges represent precedence between tasks
� topological sort gives a sequential schedule

for solving them

26

Directed Acyclic Graph

27

In-degree 0 vertices

� Every DAG has a vertex of in-degree 0
� Proof: By contradiction

� Suppose every vertex has some incoming edge
� Consider following procedure:

while (true) do
v←some predecessor of v

� After n+1 steps where n=|V| there will be a
repeated vertex

� This yields a cycle, contradicting that it is a
DAG

28

Topological Sort

� Can do using DFS

� Alternative simpler idea:
� Any vertex of in-degree 0 can be given

number 1 to start
� Remove it from the graph and then give a

vertex of in-degree 0 number 2, etc.

29

Topological Sort

1

30

Topological Sort

1 2

6

31

Topological Sort

1

3

2

32

Topological Sort

1

4
3

2

33

Topological Sort

1

4
3

5

2

34

Topological Sort

1

4
3

5
6

2

35

Topological Sort

1

4
3

5
6

7

2

36

Topological Sort

1

4
3

8

5
6

7

2

7

37

Topological Sort

1

4
3

8

9

5
6

7

2

38

Topological Sort

1

4
3

10

8

9

5
6

7

2

39

Topological Sort

1

4
3

10

8

9

11

5
6

7

2

40

Topological Sort

1

4
3

12

10

8

9

11

5
6

7

2

41

Topological Sort

1

4
3

12

10

8

9

11

13

5
6

7

2

42

Topological Sort

1

4
3

12

10

8

9

11

13

14

5
6

7

2

8

43

Implementing Topological Sort

� Go through all edges, computing in-degree
for each vertex O(m+n)

� Maintain a queue (or stack) of vertices of
in-degree 0

� Remove any vertex in queue and number it
� When a vertex is removed, decrease in-

degree of each of its neighbors by 1 and add
them to the queue if their degree drops to 0

� Total cost O(m+n)

