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CSE 421:  Introduction to 

Algorithms

Graph Traversal

Paul Beame
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Undirected Graph   G = (V,E)
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Directed Graph G = (V,E)
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Graph Traversal

� Learn the basic structure of a graph
� Walk from a fixed starting vertex s to 

find all vertices reachable from s

� Three states of vertices
� unvisited
� visited/discovered
� fully-explored
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Generic Graph Traversal Algorithm

Find: set R of vertices reachable from s∈∈∈∈V

Reachable(s): 

R←←←← {s}
While there is a (u,v )∈∈∈∈E where u∈∈∈∈R and v∉∉∉∉R

Add v to R
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Generic Traversal Always Works

� Claim: At termination R is the set of nodes 
reachable from s

� Proof
� ⊆: For every node v∈∈∈∈R there is a path from s to v
� ⊇: Suppose there is a node w∉∉∉∉R reachable from s

via a path P
� Take first node v on P such that v∉∉∉∉R
� Predecessor u of v in P satisfies

� u ∈∈∈∈ R
� (u,v) ∈∈∈∈E

� But this contradicts the fact that the algorithm 
exited the while loop. 
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Breadth-First Search

� Completely explore the vertices in order 
of their distance from s

� Naturally implemented using a queue
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BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s) 

mark  s “visited”; R←{s}; layer L0←{s}
while L i not empty

L i+1 ←←←← ∅∅∅∅
For each u∈∈∈∈L i

for each edge {u,v}
if (v is “unvisited”) 

mark v “visited”
Add v to set R and to layer L i+1

mark u “fully-explored”
i ←←←← i+1
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Properties of BFS (v)

� BFS(s) visits x if and only if there is a path in G from 
s to x.

� Edges followed to undiscovered vertices define a 
“breadth first spanning tree" of G

� Layer i in this tree, L i

� those vertices u such that the shortest path in G
from the root s is of length i.

� On undirected graphs
� All non-tree edges join vertices on the same or 

adjacent layers
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Properties of BFS

� On undirected graphs
� All non-tree edges join vertices on the 

same or adjacent layers

� Suppose not
� Then there would be vertices (x,y) such that 

x∈∈∈∈L i and y∈∈∈∈L j and j>>>>i+1
� Then, when vertices incident to x are 

considered in BFS y would be added to L i+1
and not to L j
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BFS Application: Shortest Paths
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Tree gives shortest 
paths from start vertex
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Graph Search Application: 
Connected Components

� Want to answer questions of the 
form:
� Given: vertices u and v in G
� Is there a path from u to v?

� Idea: create array A such that                  
A[u] = smallest numbered vertex 

that is connected to u
� question reduces to whether A[u]=A[v]?

Q: Why 
not create 
an array 
Path [u,v]?
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Graph Search Application: 
Connected Components

� initial state: all v unvisited
for s←1 to n do                                          

if state(s) ≠ “fully-explored” then                                 
BFS(s): setting A[u] ←s for each u found 

(and marking u visited/fully-explored)         
endif

endfor

� Total cost: O(n+m)
� each vertex is touched once in this outer 

procedure and the edges examined in the different 
BFS runs are disjoint 

� works also with Depth First Search
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DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"
DFS(u)

mark  u “visited” and add u to R
for each edge {u,v}

if (v is “unvisited”) 
DFS(v)

end for
mark u “fully-explored”
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Properties of DFS(s)

� Like BFS(s):
� DFS(s) visits x if and only if there is a path in G

from s to x
� Edges into undiscovered vertices define a "depth 

first spanning tree" of G

� Unlike the BFS tree: 
� the DFS spanning tree isn't minimum depth
� its levels don't reflect min distance from the root
� non-tree edges never join vertices on the same or 

adjacent levels

� BUT…
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Non-tree edges

� All non-tree edges join a vertex and one 
of its descendents/ancestors in the DFS 
tree

� No cross edges.
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No cross edges in DFS on undirected 
graphs

� Claim: During DFS(x) every vertex marked visited is 
a descendant of x in the DFS tree T

� Claim: For every x,y in the DFS tree T,  if (x,y) is an 
edge not in T then one of x or y is an ancestor of the 
other in T

� Proof: 
� One of x or y is visited first, suppose WLOG that x is visited 

first and therefore DFS(x) was called before DFS(y)
� During DFS(x), the edge (x,y) is examined

� Since (x,y) is a not an edge of T, y was visited when the 
edge (x,y) was examined during DFS(x)

� Therefore y was visited during the call to DFS(x) so y is a 
descendant of x.
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Applications of Graph Traversal:
Bipartiteness Testing

� Easy: A graph G is not bipartite if it contains 
an odd length cycle

� WLOG: G is connected
� Otherwise run on each component

� Simple idea: start coloring nodes starting at a 
given node s
� Color s red
� Color all neighbors of s blue
� Color all their neighbors red
� If you ever hit a node that was already colored

� the same color as you want to color it, ignore it
� the opposite color, output error
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BFS gives Bipartiteness

� Run BFS assigning all vertices from 
layer L i the color i mod 2
� i.e. red if they are in an even layer, blue if 

in an odd layer 

� If there is an edge joining two vertices 
from the same layer then output “Not 
Bipartite”
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Why does it work?

s

L i

L jL j

u v

u and v have a common ancestor

Cycle length 2(j-i)+1
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DFS(v) for a directed graph
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DFS(v)
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back edges

forward 
edges

← cross edges    

NO → cross edges
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Properties of Directed DFS

� Before DFS(s) returns, it visits all 
previously unvisited vertices reachable 
via directed paths from s

� Every cycle contains a back edge in the 
DFS tree
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Directed Acyclic Graphs

� A directed graph G=(V,E) is acyclic if it 
has no directed cycles

� Terminology: A directed acyclic graph is 
also called a DAG
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Topological Sort

� Given: a directed acyclic graph (DAG) G=(V,E)
� Output: numbering of the vertices of G with 

distinct numbers from 1 to n so edges only go 
from lower number to higher numbered vertices

� Applications
� nodes represent tasks
� edges represent precedence between tasks
� topological sort gives a sequential schedule 

for solving them 
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Directed Acyclic Graph
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In-degree 0 vertices

� Every DAG has a vertex of in-degree 0
� Proof: By contradiction

� Suppose every vertex has some incoming edge
� Consider following procedure:

while (true) do
v←some predecessor of v

� After n+1 steps where n=|V| there will be a 
repeated vertex

� This yields a cycle, contradicting that it is a 
DAG
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Topological Sort

� Can do using DFS

� Alternative simpler idea:
� Any vertex of in-degree 0 can  be given 

number 1 to start
� Remove it from the graph and then give a 

vertex of in-degree 0 number 2, etc. 
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Implementing Topological Sort

� Go through all edges, computing in-degree 
for each vertex     O(m+n)

� Maintain a queue (or stack) of vertices of           
in-degree 0

� Remove any vertex in queue and number it
� When a vertex is removed, decrease in-

degree of each of its neighbors by 1 and add 
them to the queue if their degree drops to 0

� Total cost O(m+n)


