

Bipartite Matching

- Given: A bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- MœE is a matching in G iff no two edges in M share a vertex
- Goal: Find a matching M in G of maximum possible size

Example: A Flow Function

- Not shown: $\mathrm{f}(\mathrm{u}, \mathrm{v})$ if $=0$
- Note: max flow ≥ 4 since f is a flow function, with $v(f)=4$

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G
Pick such a path, p
Find c , the min capacity of any edge in p
Subtract \mathbf{c} from all capacities on p
Delete edges of capacity 0

- This does NOT always find a max flow:

If pick $s \rightarrow b \rightarrow a \rightarrow t$ first, flow stuck at 2. But flow 3 possible.

Residual Capacity

The residual capacity (w.r.t. f) of (\mathbf{u}, \mathbf{v}) is $\mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v})=\mathbf{c}(\mathbf{u}, \mathbf{v})-\mathbf{f}(\mathbf{u}, \mathbf{v})$ if $\mathbf{f}(\mathbf{u}, \mathbf{v}) \leq \mathbf{c}(\mathbf{u}, \mathbf{v})$ and $\mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v})=\mathbf{f}(\mathbf{v}, \mathbf{u})$ if $\mathbf{f}(\mathbf{v}, \mathbf{u})>0$

- e.g. $c_{f}(s, b)=7 ; c_{f}(a, x)=1 ; c_{f}(x, a)=3$

Residual Graph \& Augmenting Paths

- The residual graph (w.r.t. f) is the graph $\mathbf{G}_{\mathrm{f}}=\left(\mathbf{V}, \mathrm{E}_{\mathrm{f}}\right)$, where
$E_{f}=\left\{(\mathbf{u}, \mathbf{v}) \mid \mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v})>0\right\}$
- Two kinds of edges
- Forward edges
- $\mathrm{f}(\mathrm{u}, \mathrm{v})<\mathrm{c}(\mathrm{u}, \mathbf{v})$ so $\mathrm{c}_{\mathrm{f}}(\mathrm{u}, \mathrm{v})=\mathrm{c}(\mathrm{u}, \mathrm{v})-\mathrm{f}(\mathrm{u}, \mathrm{v})>0$
- Backward edges
- $\mathrm{f}(\mathbf{u}, \mathbf{v})>0$ so $\mathrm{c}_{\mathrm{f}}(\mathbf{v}, \mathbf{u}) \geq-\mathrm{f}(\mathbf{v}, \mathbf{u})=\mathrm{f}(\mathbf{u}, \mathbf{v})>0$
- An augmenting path (w.r.t. f) is a simple $\mathbf{s} \rightarrow \mathbf{t}$ path in G_{f}.

An Augmenting Path

Augmenting A Flow

augment(\mathbf{f}, \mathbf{P})
$\mathbf{c}_{\mathbf{p}} \leftarrow \min _{(\mathbf{u}, \mathbf{v}) \in \mathbf{P}} \mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v}) \quad$ "bottleneck(P)"
for each $\mathbf{e} \in \mathbf{P}$
if \mathbf{e} is a forward edge then
increase $\mathbf{f}(\mathbf{e})$ by $\mathbf{c}_{\mathbf{p}}$ else (\mathbf{e} is a backward edge)
decrease $\mathbf{f}(\mathbf{e})$ by $\mathbf{c}_{\mathbf{p}}$
endif
endfor
return(f)

Claim 7.1

If G_{f} has an augmenting path P, then the function $f^{\prime}=$ augment (\mathbf{f}, \mathbf{P}) is a legal flow.

Proof:

- \mathbf{f} ' and f differ only on the edges of P so only need to consider such edges (u,v)

Proof of Claim 7.1

- If (\mathbf{u}, \mathbf{v}) is a forward edge then $\mathbf{f}^{\prime}(\mathbf{u}, \mathbf{v})=\mathbf{f}(\mathbf{u}, \mathbf{v})+\mathbf{c}_{\mathbf{p}} \leq \mathbf{f}(\mathbf{u}, \mathbf{v})+\mathbf{c}_{\mathrm{f}}(\mathbf{u}, \mathbf{v})$

$$
\begin{aligned}
& =\mathbf{f}(\mathbf{u}, \mathbf{v})+\mathbf{c}(\mathbf{u}, \mathbf{v})-\mathbf{f}(\mathbf{u}, \mathbf{v}) \\
& =\mathbf{c}(\mathbf{u}, \mathbf{v})
\end{aligned}
$$

- If (\mathbf{u}, \mathbf{v}) is a backward edge then \mathbf{f} and \mathbf{f}^{\prime} differ on flow along (\mathbf{v}, \mathbf{u}) instead of (\mathbf{u}, \mathbf{v}) $\mathbf{f}^{\prime}(\mathbf{v}, \mathbf{u})=\mathbf{f}(\mathbf{v}, \mathbf{u})-\mathbf{c}_{\mathrm{p}} \geq \mathbf{f}(\mathbf{v}, \mathbf{u})-\mathbf{c}_{\mathbf{f}}(\mathbf{u}, \mathbf{v})$ $=f(\mathbf{v}, \mathbf{u})-\mathbf{f}(\mathbf{v}, \mathbf{u})=\mathbf{0}$
- Other conditions like flow conservation still met

Ford-Fulkerson Method

Start with $\mathbf{f}=\mathbf{0}$ for every edge
While G_{f} has an augmenting path, augment

- Questions:
- Does it halt?
- Does it find a maximum flow?
- How fast?

```
    Ford-Fulkerson Method
    augment
```


Observations about Ford-Fulkerson

 Algorithm- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value $\mathbf{v}\left(\mathbf{f}^{\prime}\right)=\mathbf{v}(\mathbf{f})+\mathbf{c}_{\mathrm{p}}>\mathbf{v}(\mathbf{f})$ for $\mathbf{f}^{\prime}=$ augment (\mathbf{f}, \mathbf{P})
- Since edges of residual capacity 0 do not appear in the residual graph
- Let $\mathbf{C}=\boldsymbol{\Sigma}_{(\mathbf{s}, \mathrm{u}) \in \mathrm{E}} \mathbf{C}(\mathbf{s}, \mathbf{u})$
- $v(f) \leq C$
- F-F does at most \mathbf{C} rounds of augmentation since flows are integers and increase by at least 1 per step

Running Time of Ford-Fulkerson

- For $\mathrm{f}=\mathbf{0}, \mathrm{G}_{\mathrm{f}}=\mathbf{G}$
- Finding an augmenting path in G_{f} is graph search $O(n+m)=O(m)$ time
- Augmenting and updating G_{f} is $\mathrm{O}(\mathbf{n})$ time
- Total O(mC) time
- Does is find a maximum flow?
- Need to show that for every flow f that isn't maximum G_{f} contains an s-t-path

Convenient Definition

- fout $_{(A)}=\sum_{v \in A, w \in A} f(v, w)$
- $\operatorname{fin}(A)=\Sigma_{v \in A, u \notin A} f(\mathbf{u}, \mathbf{v})$

Claims 7.6 and 7.8

- For any flow f and any cut (A,B),
- the net flow across the cut equals the total flow, i.e., $v(\mathbf{f})=f^{\text {out }}(\mathbf{A})-\mathrm{fin}(\mathbf{A})$, and
- the net flow across the cut cannot exceed the capacity of the cut, i.e. $f^{\text {out }}(\mathbf{A})$ - $\mathrm{fin}^{(A)} \leq \mathbf{c}(\mathbf{A}, B)$
- Corollary :

Max flow \leq Min cut

Proof of Claim 7.6

- Consider a set \mathbf{A} with $\mathbf{s} \in \mathbf{A}, \mathbf{t} \notin \mathbf{A}$
- $f^{\text {out }}(A)-f^{\text {in }}(A)=\sum_{v \in A, w \in A} f(v, w)-\sum_{v \in A, u \boxminus A} f(u, v)$
- We can add flow values for edges with both endpoints in A to both sums and they would cancel out so

$=\sum_{v \in A}\left(\Sigma_{w \in V} f(v, w)-\Sigma_{u \in V} f(u, v)\right)$
$=\sum_{\mathrm{v} \in \mathrm{A}} \mathrm{f}^{\text {fout }}(\mathrm{v})-\mathrm{f}^{\text {in }}(\mathrm{v})$
$=\mathbf{f o u t}^{\text {out }}(\mathbf{s})-\boldsymbol{f}^{\mathrm{in}}(\mathbf{s})$
since all other vertices have fout $(\mathbf{v})=f^{\operatorname{fin}}(\mathbf{v})$
- $\mathbf{v}(\mathbf{f})=$ fout (\mathbf{s}) and $\mathrm{fin}(\mathbf{s})=0$

Proof of Claim 7.8

- $\mathbf{V}(\mathbf{f})=\mathbf{f}^{\text {fout }}(\mathbf{A})-\boldsymbol{f}^{\mathrm{in}}(\mathrm{A})$
$\leq f^{\text {out }}(\mathrm{A})$
$=\Sigma_{v \in A, w \notin A} f(\mathbf{v}, \mathbf{w})$
$\leq \sum_{\mathrm{v} \in \mathrm{A}, \mathrm{w} \notin \mathrm{A}} \mathbf{C}(\mathbf{v}, \mathbf{w})$
$\leq \sum_{\mathrm{v} \in \mathrm{A}, \mathrm{w} \in \mathrm{B}} \mathrm{C}(\mathrm{v}, \mathrm{w})$
$=\mathbf{c}(\mathbf{A}, \mathbf{B})$

Max Flow / Min Cut Theorem

Claim 7.9 For any flow \mathbf{f}, if $\mathbf{G}_{\mathbf{f}}$ has no augmenting path then there is some s-t-cut (\mathbf{A}, \mathbf{B}) such that $\mathbf{v}(\mathbf{f})=\mathbf{c}(\mathbf{A}, \mathbf{B}) \quad$ (proof on next slide)

- We know by Claims 7.6 \& 7.8 that any flow f' satisfies $\mathbf{v}\left(\mathbf{f}^{\prime}\right) \leq \mathbf{c}(\mathbf{A}, \mathbf{B})$ and we know that $F-F$ runs for finite time until it finds a flow f satisfying conditions of Claim 7.9
- Therefore by 7.9 for any flow $\mathbf{f}^{\prime}, \mathbf{v}\left(\mathbf{f}^{\mathbf{\prime}}\right) \leq \boldsymbol{v}(\mathbf{f})$
- Corollary (1) F-F computes a maximum flow in \mathbf{G} (2) For any graph \mathbf{G}, the value $\mathbf{v}(\mathbf{f})$ of a maximum flow $=$ minimum capacity $\mathbf{c}(\mathbf{A}, \mathbf{B})$ of any $\mathbf{s - t - c u t}$ in \mathbf{G}

Claim 7.9

Let $\mathbf{A}=\left\{\mathbf{u} \mid \exists\right.$ an path in $\mathbf{G}_{\mathbf{f}}$ from \mathbf{s} to $\left.\mathbf{u}\right\}$

$$
B=V-A ; s \in A, t \in B
$$

This is true for every edge crossing the cut, i.e. $\mathbf{f}^{\text {out }}(\mathbf{A})=\sum \mathbf{f}(\mathbf{u}, \mathbf{v})=\sum \mathbf{c}(\mathbf{u}, \mathbf{v})=\mathbf{c}(\mathbf{A}, \mathbf{B})$ and $\mathrm{fin}(\mathbf{A})=\mathbf{0}$ so

Flow Integrality Theorem

If all capacities are integers

- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which $f(u, v)$ is an integer for all edges (u, v)

Corollaries \& Facts

- If Ford-Fulkerson terminates, then it's found a max flow.
- It will terminate if $\mathbf{c}(\mathbf{e})$ integer or rational (but may not if they're irrational).
- However, may take exponential time, even with integer capacities:

Capacity-scaling algorithm

- General idea:
- Choose augmenting paths \mathbf{P} with 'large' capacity \mathbf{c}_{p}
- Can augment flows along a path \mathbf{P} by any amount $\mathrm{b} \leq \mathrm{c}_{\mathrm{p}}$
- Ford-Fulkerson still works
- Get a flow that is maximum for the highorder bits first and then add more bits later

Capacity Scaling

Capacity Scaling Bit 2

Residual capacity across min cut is at most m

Capacity Scaling Bit 3

Residual capacity across min cut is at most m

Capacity Scaling Final

Total time for capacity scaling

- $\log _{2} \mathbf{U}$ rounds where \mathbf{U} is largest capacity
- At most m augmentations per round
- Let c_{i} be the capacities used in the $\mathrm{i}^{\text {th }}$ round and f_{i} be the maxflow found in the $i^{\text {th }}$ round
- For any edge (\mathbf{u}, \mathbf{v}), $\mathbf{c}_{\mathbf{i}+1}(\mathbf{u}, \mathbf{v}) \leq \mathbf{2} \mathbf{c}_{\mathrm{i}}(\mathbf{u}, \mathbf{v})+\mathbf{1}$
- $\mathfrak{i}+1^{\text {st }}$ round starts with flow $\mathrm{f}=\mathbf{2} \mathrm{f}_{\mathrm{i}}$
- Let (\mathbf{A}, \mathbf{B}) be a min cut from the $\mathrm{i}^{\text {th }}$ round - $v\left(f_{i}\right)=c_{i}(A, B)$ so $v(f)=2 c_{i}(A, B)$
- $\mathbf{v}\left(\mathrm{f}_{\mathrm{i}+1}\right) \leq \mathrm{c}_{\mathrm{i}+1}(\mathrm{~A}, \mathrm{~B}) \leq \mathbf{2} \mathrm{c}_{\mathrm{i}}(\mathrm{A}, \mathrm{B})+\mathrm{m}=\mathbf{v}(\mathrm{f})+\mathrm{m}$
- $O(m)$ time per augmentation
- Total time $O\left(\mathbf{m}^{2} \log \mathbf{U}\right)$

Edmonds-Karp Algorithm

- Use a shortest augmenting path (via Breadth First Search in residual graph)
- Time: O(n m$\left.{ }^{2}\right)$

BFS/Shortest Path Lemmas

Distance from \mathbf{s} in \mathbf{G}_{f} is never reduced by:

- Deleting an edge

Proof: no new (hence no shorter) path created

- Adding an edge (u, v), provided v is nearer than u
Proof: BFS is unchanged, since \mathbf{v} visited before (u,v) examined

Key Lemma

Let f be a flow, G_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along \mathbf{P}.

Proof: Augmentation along \mathbf{P} only deletes forward edges, or adds back edges that go to previous vertices along \mathbf{P}

Project Selection
 a.k.a. The Strip Mining Problem

- Given
- a directed acyclic graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ representing precedence constraints on tasks (a task points to its predecessors)
- a profit value $\mathbf{p}(\mathbf{v})$ associated with each task $\mathbf{v} \in \mathrm{V}$ (may be positive or negative)
- Find
- a set $\mathbf{A \subseteq V}$ of tasks that is closed under predecessors, i.e. if $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ and $\mathbf{u} \in \mathbf{A}$ then $\mathbf{v} \in \mathbf{A}$, that maximizes $\operatorname{Profit}(\mathbf{A})=\Sigma_{\mathbf{v} \in \mathrm{A}} \mathbf{p}(\mathbf{v})$

Extended Graph G'

- Want to arrange capacities on edges of \mathbf{G} so that for minimum s-t-cut (S,T) in G', the set $\mathbf{A}=\mathbf{S}-\{\mathbf{s}\}$
- satisfies precedence constraints
- has maximum possible profit in G
- Cut capacity with $S=\{\mathbf{s}\}$ is just $C=\Sigma_{v: p(v) \geq 0} p(v)$ - Profit $(\mathbf{A}) \leq \mathbf{C}$ for any set \mathbf{A}
- To satisfy precedence constraints don't want any original edges of G going forward across the minimum cut
- That would correspond to a task in $\mathrm{A}=\mathrm{S}$-\{s\} that had a predecessor not in $\mathbf{A}=\mathbf{S}-\{\mathbf{s}\}$
- Set capacity of each of these edges to C+1
- The minimum cut has size at most C

Project Selection

- Claim Any s-t-cut (S,T) in G' such that A=S-\{s\} satisfies precedence constraints has capacity
$c(\mathbf{S}, \mathbf{T})=\mathbf{C}-\Sigma_{\mathbf{v} \in \mathbf{A}} \mathbf{p}(\mathbf{v})=\mathbf{C}-\operatorname{Profit}(\mathbf{A})$
- Corollary A minimum cut (S,T) in G' yields an optimal solution $\mathbf{A}=\mathbf{S}-\{\mathbf{s}\}$ to the profit selection problem
- Algorithm Compute maximum flow f in G^{\prime}, find the set S of nodes reachable from s in \mathbf{G}_{f}^{\prime} and return $\mathbf{S}-\{\mathbf{s}\}$

```
Proof of Claim
    - A=S-{s} satisfies precedence constraints
    - No edge of G crosses forward out of A by our
        choice of capacities
        - Only forward edges cut are of the form (v,t) for
        v\inA
        - The (v,t) edges for v\inA contribute
            \sum v\inA:p(v)<0
        - The (s,v) edges for v}\mathbb{v}\mathbf{A}\mathrm{ contribute
            \Sigma v\approxA:p(v)\geq0
        - Therefore the total capacity of the cut is
```


