CSE 421:

Algorithms

Dynamic Programming

Paul Beame

Introduction to

’ Dynamic Programming

= Dynamic Programming

= Give a solution of a problem using smaller
sub-problems where the parameters of all
the possible sub-problems are determined
in advance

= Useful when the same sub-problems show
up again and again in the solution

A simple case:

. Computing Fibonacci Numbers

» Recall F,=F,+F,, and F,=0, F,=1

= Recursive algorithm:
= Fibo(n)
if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

| ’ Call tree - start

F (6)
F(5) F(4)
F@ F(3)
/ \
F@) F(2)
VRN
F@2) F@
F(1) F()
I I
1 0

| Full call tree

F (6)
F(5) F4)
|
F(4) F (3) F (3)\ F@)
1
/ AN /\ F () F (1) /\
F@3) F@ F@ F() / \ I F@)
7 N\ /\ LFM FO
PO FOLY) o FO FO | !
/N TR

F(1) F(0) 1 0
1 1

1 0

F(0)
|

0

_ Memoization (Caching)

= Remember all values from previous
recursive calls

= Before recursive call, test to see if value
has already been computed

= Dynamic Programming

= Convert memoized algorithm from a
recursive one to an iterative one

Fibonacci

Dynamic Programming Version

= FiboDP(n):
F[0]- O
F[1] -1
fori=2 to n do
Fli] < Fli-1]+F[i-2]
endfor
return(F[n])

Fibonacci: Space-Saving Dynamic

’ Programming

= FiboDP(n):

prev « O

curr <1

fori=2 to n do
temp —curr
Curr —curr +prev
prev —temp

endfor

return(curr)

Dynamic Programming

= Useful when

= Same recursive sub-problems occur
repeatedly

= Can anticipate the parameters of these
recursive calls

= The solution to whole problem can be
figured out with knowing the internal details
of how the sub-problems are solved

= principle of optimality

“Optimal solutions to the sub-problems suffice for
optimal solution to the whole problem”

Three Steps to

’ Dynamic Programming

= Formulate the answer as a recurrence
relation or recursive algorithm

= Show that the number of different values of
parameters in the recursive calls is “small”
= e.g., bounded by a low-degree polynomial
= Can use memoization

= Specify an order of evaluation for the
recurrence so that you already have the
partial results ready when you need them.

Weighted Interval Scheduling

= Same problem as interval scheduling
except that each request i also has an
associated value or weight w;
= W; might be
= amount of money we get from renting
out the resource for that time period
= amount of time the resource is being
used w;=f;-s;
= Goal: Find compatible subset S of
requests with maximum total weight

Greedy Algorithms for Weighted

’ Interval Scheduling?

= No criterion seems to work
= Earliest start time s;
= Doesn't work

= Shortest request time f-s;
= Doesn't work R —

= Fewest conflicts
= Doesn't work J— J—

= Earliest finish fime f,
= Doesn'’t work

= Largest weight w;
= Doesn't work

Towards Dynamic Programming:

Step 1 — A Recursive Algorithm

= Suppose that like ordinary interval scheduling
we have first sorted the requests by finish
time f; so f, <f, <...<f

= Say request i comes before requestj if i<j

= For any request j let p(j) be

= the largest-numbered request before j that is
compatible with

= or 0 if no such request exists
= Therefore {1,...,p(j)} is precisely the set of
requests before j that are compatible with j

Towards Dynamic Programming:

’ Step 1 — A Recursive Algorithm

= Two cases depending on whether an
optimal solution O includes request n
= If it does include request n then all other
requests in O must be contained in
{1,...p(n)}
= Not only that!

= Any set of requests in {1,...,p(n)} will be
compatible with request n

= So in this case the optimal solution O must
contain an optimal solution for {1,...,p(n)}

= “Principle of Optimality”

Towards Dynamic Programming:

. Step 1 — A Recursive Algorithm

= Two cases depending on whether an
optimal solution O includes request n
= If it does not include request n then all
requests in O must be contained in
{1,..., n-1}
= Not only that!

= The optimal solution O must contain an
optimal solution for {1,..., n-1}

= “Principle of Optimality”

Towards Dynamic Programming:

. ’ Step 1 — A Recursive Algorithm

= All subproblems involve requests {1,..,i} for
some i

= Fori=1,...,n let OPT(i) be the weight of the
optimal solution to the problem {1,...,i}

= The two cases give
OPT(n)=max[w,+OPT(p(n)),OPT(n-1)]

= Also
= n0O iff w,+OPT(p(n))>OPT(n-1)

Towards Dynamic Programming:

Step 1 — A Recursive Algorithm

= Sort requests and compute array pJi] for
eachi=1,...,n

ComputeOpt(n)
if n=0 then return(0)
else
u — ComputeOpt(p[n])
v « ComputeOpt(n-1)
if w,+u>v then return(w,+u)
else return(v)
endif

Towards Dynamic Programming:
Step 2 — Small # of parameters

= ComputeOpt(n) can take exponential time in
the worst case
= 2" calls if p(i)=i-1 for every |

= There are only n possible parameters to
ComputeOpt

= Store these answers in an array OPT[n] and
only recompute when necessary

= Memoization

= Initialize OPTIJi]=0 for i=1,...,n

Dynamic Programming:
Step 2 — Memoization

ComputeOpt(n) MComputeOpt(n)
if n=0 then return(0) if OPT[n] =0 then
else v — ComputeOpt(n)
u — MComputeOpt(p[n]) OPT[n] Vv
vV -« MComputeOpt(n-1) return(v)
if w,+u>v then else
return(w,+u) return(OPT[n])
else return(v) endif
endif

Dynamic Programming Step 3:
Iterative Solution

= The recursive calls for parameter n have parameter
values i that are <n

IterativeComputeOpt(n)
array OPT[0..n]
OPT[0] -0
fori=1ton
if w;+OPT[p[i]] >OPTI[i-1] then
OPTIi] —w;+OPT[p[i]]
else
OPTIi] - OPTJ[i-1]
endif
endfor

20

Producing the Solution

IterativeComputeOptSolution(n)

array OPT[0..n], Used[1..n] N

OPT[0] -0 S den
fori=lton s-o0
if w,+OPT[p[i]] OPT[i-1] then Wh'_'fe > %d,o_ "
OPT[i] —w,+OPTIp[il] if Used[i]=1 then
: s.sof}
Used[i]~1 : i plil
else) . else
OPTI[i] — OPT[i-1] ici-1
Used[i] -0 endif
endif endwhile
endfor :

21

1 2 3 4 5 6 7 8 9
4 2 11 (15 |11 |12 |18
Sfl‘ 7 9 10 |13 |14 |17 (18 |19 |20
wi 3 [7 |4 |5 |3 |2 |7 |71 |2
plil
OPTI[i]
Used][i]

22

1 2 4 5 6 7 8 9
. 4 2 11 |15 |11 |12 |18
f“ 7 9 10 |13 |14 |17 |18 |19 |20
w, |3 7 3 2 7 7 2
el (O 0 0 1 3 5 3 3 7
OPTIi]

Used][i]

23

1 2
. 4 2 6 8 11 |15 |11 |12 |18
fl‘ 7 9 10 |13 |14 |17 (18 |19 |20
w, |3 7 4 5 3 2 7 7 2
plil {O 0 0 1 3 5 3 3
OPT[] | 3 7 7 8 10 (12 |14 |14 |16
Used[i] {1 1 0 1 1 1 1 0 1

24

_ Example
3

1 2 4 5 6 7 8 9
. 4 2 6 8 11 |15 |11 |12 |18
f“ 7 9 10 |13 |14 |17 |18 |19 |20
w, |3 7 4 5 3 2 7 7 2
el (O 0 0 1 3 5 3 3 7
OPT[] | 3 7 7 8 10 (12 |14 114 |16
Used[i] {1 1 0 1 1 1 1 0 1

$={9,7,2}

25

_ ’ Segmented Least Squares

= Least Squares
= Given a set P of n points in the plane
p:l_:(xllyl)r---rpn:(xnfyn) with X1<"'< Xn
determine a line L given by y=ax+b that
optimizes the totaled ‘squared error’
= Error(L,P)=2(y;-ax;-b)?
= A classic problem in statistics
= Optimal solution is known (see text)
= Call this line(P) and its error error(P)

26

_ Least Squares

27

_ ’ Segmented Least Squares

= What if data seems to follow a
piece-wise linear model?

28

_ Segmented Least Squares

29

_ ’ Segmented Least Squares

30

Segmented Least Squares

= What if data seems to follow a piece-wise
linear model?

= Number of pieces to choose is not obvious

= If we chose n-1 pieces we could fit with O
error
= Not fair

= Add a penalty of C times the number of
pieces to the error to get a total penalty

= How do we compute a solution with the
smallest possible total penalty?

’ Segmented Least Squares

= Recursive idea
= If we knew the point p; where the last line

segment began then we could solve the
problem optimally for points p,...,p; and
combine that with the last segment to get a
global optimal solution

= Let OPT(i) be the optimal penalty for

points {p,....p;}
= Total penalty for this solution would be
Error({p;,...,p,}) + C + OPT(j-1)

32

_ Segmented Least Squares

33

_ ’ Segmented Least Squares

= Recursive idea
= We don’t know which point is p;
= But we do know that 1<j<n

= The optimal choice will simply be the
best among these possibilities

= Therefore

OPT(n)=min 14, {Error({p;,....p,}) + C +
OPT(-1)}

34

Dynamic Programming Solution

SegmentedLeastSquares(n) FindSegments
array OPT[0..n], Begin [1..n] ien
OPT[0] -0 s-o
fori=lton while i> 1 do
OPT[i] ~Error {(py,....p)H+C compute Line ({Pgeging) +++-PiY)
Begin [i] -1 outpUt (Pgegingy P, Line
forj=2toi-1) i Begin [i]
e —Error{(p;,...,.p)+C+OPT[j-1] endwhile
if e <OPTI[i] then
OPTI[i] —e
Begin [i] —j
endif

endfor
endfor
return(OPT[n])

’ Knapsack (Subset-Sum) Problem

= Given:

= integer W (knapsack size)

= N object sizes Xy, Xy, ..., X,
= Find:

= Subset S of {1,..., n} such that > x,sW
but Zx, is as large as possible

36

Recursive Algorithm

= Let K(n,W) denote the problem to solve
for W and x;, X,, ..., X,

= For n>0,

= The optimal solution for K(n,W) is the better
of the optimal solution for either
K(n-1,W) or x,+K(n-1,W-x,)
= For n=0

= K(0,W) has a trivial solution of an empty
set S with weight 0

. Common Sub-problems

= Only sub-problems are K(i,w) for
=i =01,.., n
= w=01,.,W

= Dynamic programming solution
= Table entry for each K(i,w)

« OPT - value of optimal soln for first i
objects and weight w

= belong flag - is x; a part of this solution?
= Initialize OPT[O,w] for w=0,...,W
= Compute all OPT[i,*] from OPTJi-1,*] for i>0

39

’ Recursive calls

= Recursive callson list ...,3, 4, 7

K(n,W)

RS '::(n—3,W'7)
K(n_3,W'7)

38

. ’ Dynamic Knapsack Algorithm

for w=0to W; OPT[O,w] ~ O; end for
fori=1to n do
for w=0to W do
OPTI[i,w]~OPT[i-1,w] Tlme O(nW)
belong [i,w] -0
if w2 x;then
val «x+OPT[i,w-x;]
if val>OPT[i,w] then
OPT[i,w] val
belong [i,w] -1
end for
end for
return(OPT[n,W])

40

Sample execution on 2, 3, 4, 7 with

K=15

41

’ Saving Space

= To compute the value OPT of the
solution only need to keep the last two
rows of OPT at each step

= What about determining the set S?
= Follow the belong flags O(n) time
= What about space?

42

Three Steps to

| Dynamic Programming

= Formulate the answer as a recurrence
relation or recursive algorithm

= Show that the number of different values of
parameters in the recursive algorithm is
“small”
= e.g., bounded by a low-degree polynomial

= Specify an order of evaluation for the

recurrence so that you already have the
partial results ready when you need them.

43

RNA Secondary Structure:

) ’ Dynamic Programming on Intervals

= RNA: sequence of bases

= String over alphabet {A, C, G, U}
U-G-U-A-C-C-G-G-U-A-G-U-A-C-A

= RNA folds and sticks to itself like a zipper
= A bonds to U
= Cbondsto G
= Bends can't be sharp
= No twisting or criss-crossing

= How the bonds line up is called the RNA
secondary structure

44

‘ RNA Secondary Structure

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

45

Another view of

) ’ RNA Secondary Structure
Y

G
U

A
C

No crossing

>0 > C O
>CocCc >

A-r-Cor-Ane-Une-Coe-Unr-GreUne-GomrAnr-CoreGme-Acm-Unn-GoneU-- -A

46

| RNA Secondary Structure

= Input: String x,...x,,0{A,C,G,U}*
= Output: Maximum size set S of pairs (i,))
such that
= {X;,x}={A,U} or {x;,x;} ={C,G}
= The pairs in S form a matching
= i<j-4 (no sharp bends)
= No crossing pairs

= If (i,j) and (k,I) are in S then it is not the
case that they cross as in i<k<j<l

47

’ Recursion Solution

= Try all possible matches for the last
base

OPT(1. k-1) OPT(k+1..j-1)

OPT(1..)=MAX(OPT(1..j-1),14MAX, -y 5 (OPT(1..k-1)+OPT(k+1.-1))
X matches x; § 7
General form: Doesn't start at 1
OPT(i..j)=MAX(OPT(i..j-1),
1+MAX =i 5 (OPT(i..k-1)+OPT(k+1..j-1))

Xy matches x;
48

RNA Secondary Structure

= 2D Array OPT(i,j) for i<j represents optimal # of
matches entirely for segment i..j

= Forj-i <4 set OPT(i,j)=0 (no sharp bends)

= Then compute OPT(i,j) values when
j-i=5,6,...,n-1 in turn using recurrence.

= Return OPT(1,n)

= Total of O(n3) time

= Can also record matches along the way to produce S

= Algorithm is similar to the polynomial-time algorithm for
Context-Free Languages based on Chomsky Normal Form
from 322

= Both use dynamic programming over intervals

49

Sequence Alignment:

’ Edit Distance

= Given:
= Two strings of characters A=a, a, ... a, and
B=b, b, ... b,
= Find:

= The minimum number of edit steps needed
to transform A into B where an edit can be:

= insert a single character
= delete a single character
= substitute one character by another

50

Sequence Alignment vs Edit Distance

= Sequence Alignment

= Insert corresponds to aligning with a “—" in the first
string

= Cost & (in our case 1)

= Delete corresponds to aligning with a “~" in the
second string

= Cost & (in our case 1)

= Replacement of an a by a b corresponds to a
mismatch

= Cost a, (inour case 1 if azb and 0 if a=b)

= In Computational Biology this alignment
algorithm is attributed to Smith & Waterman

51

’ Applications

= "diff" utility — where do two files differ

= Version control & patch distribution —
save/send only changes

= Molecular biology

= Similar sequences often have similar origin
and function

= Similarity often recognizable despite
millions or billions of years of evolutionary
divergence

52

Growth of GenBank
i 14 15000

13500
12000
10500
8000
7500

6000

Sequences (millions)

4 4500

mGase Pairs
2 —s—Sequences

Base Pairs of DNA (millions)

3000

1500

L o o
1982 1985 1988 1991 1994 1997 2000

’ Recursive Solution

= Sub-problems: Edit distance problems
for all prefixes of A and B that don’t
include all of both A and B

= Let D(i,j) be the number of edits
required to transform a, a, ... g, into
b, b,.. D

= Clearly D(0,0)=0

54

| Computing D(n,m)

= Imagine how best sequence handles
the last characters a, and b,
= If best sequence of operations
= deletes a, then D(n,m)=D(n-1,m)+1
= inserts b, then D(n,m)=D(n,m-1)+1
= replaces a, by b, then
D(n,m)=D(n-1,m-1)+1
= matches a, and b, then
D(n,m)=D(n-1,m-1)

55

’ Recursive algorithm D(n,m)

if n=0 then
return (m)
elseif m=0 then
return(n)
else
if a,;=b,, then
replace-cost ~ 0

else } cost of substitution of a, by b, (if used)

replace-cost «~ 1
endif
return(min{ D(n-1, m) + 1,
D(n, m-1) +1,
D(n-1, m-1) + replace-cost })

56

Dynamic

J Programming

forj=0tom; D(0,) — j; endfor

fori=1ton; D(i,0) — i; endfor D(i-1, j-1) D(-1, j)
fori=1ton a ...
forj=1tom i-1
if a=b; then T
replace-cost ~ 0 m--t---
else D(i, j-1) ! D, j) i
replace-cost « 1 —', ,
endif : :
DGj) « min {DG-1,j)+1, 7777
D, j-1) + 1,
D(i-1, j-1) + replace-cost }
endfor
endfor

57

Example run with

J ’ AGACATTG and GAGTTA

0

A G A C A T T
1 2 3 4 5 6 7

G
8

G1

A2

G 3

T4

T5

A6

58

Example run with

J AGACATTG and GAGTTA

G
2
1

= >
Njw | >
w|n| O
sl | >
ulo | 4
o~ |+
~Njo | @

vVil9V 9
o|lu|s|w|[nv|R|o

59

Example run with

| ’ AGACATTG and GAGTTA

wlh| O
INIG R
vlo | 4
o~ | H
~Njoo | ®

RlRR]| >
NI LSRN0}
B Nofw | >

V119V 9
o|lu|s|w|[nv|R|o

60

10

Example run with

| AGACATTG and GAGTTA

N R Rk >
RrINv[RIN] O
N R[N w]| >
NiNv|ws | O
wlw|n|lo| >
MO | H
a|lo|o|~N]| 4
olo|~Nfe| @

vVili9V 9
o|lu|s|w|[nv|R|o

61

Example run with

| ’ AGACATTG and GAGTTA

V119V 9

o|lu|lsr|lw|nv|r|o
glbd|lw|[N|R| R[] >
IS FRR I IS P S I CR o)
wlw[nvv|k I N|w | >
Awlw|nv[v|w(s]| O
w|n|w|w|w|s|oa| >
rw|lw|[a|s|ojo| 4
rw|b|loa|o|o|~N]| 4
salo|lo|lo|~N|eo | ®

62

Example run with

| AGACATTG and GAGTTA

AG A CA T T G

0+ 14243« 44 54¢6<7<«8
® 1. 142« 3444546« 7
|2 1t2 12434445456
o3[2[1+2 24344545
|4l 3l2]2+3[3]34445
- [5[4a]l3]3[344[3[344
>|6] 5(a|3d4a|3dala]a

63

Example run with

| ’ AGACATTG and GAGTTA

AGACATTG

0+ 1424344454647« 8
® 1. 1«42« 3444546« 7
> 2] 1t2 1243444546
o3[214224344545
~|a]l3l2]2+3[3]34445
- [5[al3[3]344a[3[344
>|6|5|a|3da|3dala]a

64

| Reading off the operations

= Follow the sequence and use each
color of arrow to tell you what operation
was performed.
= From the operations can derive an
optimal alignment
AGACATTG
_GAG_TTA

65

’ Saving Space

= To compute the distance values we only need the
last two rows (or columns)
= O(min(m,n)) space
= To compute the alignment/sequence of operations
= seem to need to store all O(mn) pointers/arrow colors
= Nifty divide and conquer variant that allows one to do
this in O(min(m,n)) space and retain O(mn) time
= In practice the algorithm is usually run on smaller chunks of

a large string, e.g. m and n are lengths of genes so a few
thousand characters

= Researchers want all alignments that are close to optimal

= Basic algorithm is run since the whole table of pointers
(2 bits each) will fit in RAM

= |deas are neat, though

66

11

Saving space

= Alignment corresponds to a path through the table
from lower right to upper left
= Must pass through the middle column

= Recursively compute the entries for the middle
column from the left
= If we knew the cost of completing each then we could figure
out where the path crossed
= Problem
= There are n possible strings to start from.
= Solution
= Recursively calculate the right half costs for each entry in this
column using alignments starting at the other ends of the two input
strings!
= Can reuse the storage on the left when solving the right
hand problem

67

Shortest paths with negative cost

’ edges (Bellman-Ford)

= Dijsktra’s algorithm failed with negative-cost
edges
= What can we do in this case?
= Negative-cost cycles could result in shortest paths
with length -co
= Suppose no negative-cost cycles in G
= Shortest path from s to t has at most n-1 edges

= If not, there would be a repeated vertex which
would create a cycle that could be removed
since cycle can’t have —ve cost

68

Shortest paths with negative cost

edges (Bellman-Ford)

= We want to grow paths from s to t based
on the # of edges in the path
= Let Cost(s,t,i)=cost of minimum-length
path from s to t using up to i hops.
. Cost(v,t,0)={0 if v=t
oo otherwise

= Cost(v,t,i)=min{Cost(v,t,i-1),
ming,) ge(Cy, +CoSt(w,t,i-1))}

69

’ Bellman-Ford

= Observe that the recursion for
Cost(s,t,i) doesn’t change t
= Only store an entry for each v and i
= Termed OPT(v,i) in the text
= Also observe that to compute OPT(*,i)
we only need OPT(*,i-1)

= Can store a current and previous copy in
O(n) space.

70

Bellman-Ford

ShortestPath(G,s,t)
for all vOV
OPT[v] 0
OPT[t]~0
fori=1ton-1do)
for all vOV do O(mn) time
OPT'[v] « ming, g (Cy, +*OPT[W])
for all vOlV do
OPT[v] - min(OPT’[v],OPT[v])
return OPTI[s]

71

’ Negative cycles

= Claim: There is a negative-cost cycle that can reach t
iff for some vertex vOV, Cost(v,t,n)<Cost(v,t,n-1)
= Proof:
= We already know that if there aren’t any then we only need
paths of length up to n-1
= For the other direction
= The recurrence computes Cost (v,t,i) correctly for any
number of hops i
= The recurrence reaches a fixed point if for every vOV,
Cost (v,t,i)=Cost (v,t,i-1)
= A negative-cost cycle means that eventually some
Cost (v,t,i) gets smaller than any given bound

= Can't have a —ve cost cycle if for every vOV,
Cost (v,t,n)=Cost (v,t,n-1)

72

12

| Last details

= Can run algorithm and stop early if the OPT
and OPT’ arrays are ever equal

= Even better, one can update only neighbors v of
vertices w with OPT’[w]ZOPT[w]

= Can store a successor pointer when we
compute OPT
= Homework assignment

= By running for step n we can find some vertex
Vv on a negative cycle and use the successor
pointers to find the cycle

73

| ’ Bellman-Ford

74

| Bellman-Ford
2

75

76

77

78

13

| Bellman-Ford

79

| ’ Bellman-Ford

80

| Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
« Update distances in reverse order of topological sort
« Only one pass through vertices required

¢ O(n+m) time

81

14

