CSE 421: Introduction to

Algorithms

Divide and Conquer

Paul Beame

_ ’ Algorithm Design Techniques

= Divide & Conquer

= Reduce problem to one or more sub-problems of
the same type

= Typically, each sub-problem is at most a
constant fraction of the size of the original
problem

= €.g. Mergesort, Binary Search, Strassen’s
Algorithm, Quicksort (kind of)

‘ Fast exponentiation

= Power(a,n)
= Input: integer n and number a
= Output: a"

= Obvious algorithm
= n-1 multiplications

= Observation:
= if n is even, n=2m, then an=am.am

_ ’ Divide & Conquer Algorithm

= Power(a,n)
if n=0 then return(1)
else if n=1 then return(a)
else
X —Power(a,n/2])
if n is even then
return(x-x)
else
return(asx-x)

_ Analysis

= Worst-case recurrence
= T(n)=T(n/2))+2 for n=1
= T(1)=0

= Time

» T(N)=T(n/2))+2 < T(n/4))+2+2 < ...
< T(1)+2+...+2 = 2 log,n

log ,n copies
= More precise analysis:

« T(n)= [log,n1 + # of 1's in n’s binary
representation

_ ’ A Practical Application- RSA

= Instead of a" want a" mod N
= a*i mod N = ((@ mod N)-(al mod N)) mod N
= same algorithm applies with each x-y replaced by
= ((x mod N)-(y mod N)) mod N

= In RSA cryptosystem (widely used for security)

= need a” mod N where a, n, N each typically have
1024 bits

= Power: at most 2048 multiplies of 1024 bit
numbers

= relatively easy for modern machines
= Naive algorithm: 21924 multiplies

Binary search for roots

. (bisection method)
\J/\

= Given:
= continuous function f and two points a<b with
f(a) <0 and f(b) >0
= Find:
= approximation to ¢ s.t. f(c)=0 and a<c<b

| ’ Bisection method

Bisection(a,b, €)
if (a-b) < € then
return(a)
else
c —(a+b)/2
if f(c) <0 then
return(Bisection(c,b,g))
else
return(Bisection(a,c,€))

‘ Time Analysis

= At each step we halved the size of the
interval

= |t started at size b-a
= |t ended at size €

= # of calls to f is log,((b-a)/e)

| ’ Euclidean Closest Pair

= Given a set P of n points p,,...,p,, with real-
valued coordinates

= Find the pair of points p;,p;0P such that the
Euclidean distance d(p;,p;) is minimized

= ©(n?2) possible pairs

= In one dimension there is an easy O(n log n)
algorithm
= Sort the points
= Compare consecutive elements in the sorted list

= What about points in the plane?

| Closest Pair in the Plane
O .

No single direction along which one
can sort points to guarantee success!

11

Closest Pair In the Plane:

. ’ Divide and Conquer

= Sort the points by their x coordinates

= Split the points into two sets of n/2 points L
and R by x coordinate

= Recursively compute
= closest pair of pointsin L, (p,,q,)
= closest pair of points in R, (pg,dg)

= Let &=min{d(p_,q,),d(pr,qr)} @nd let (p,q) be
the pair of points that has distance &

= This may not be enough!

= Closest pair of points may involve one point from
L and the other from R!

| A clever geometric idea

| ’ A clever geometric idea

R
L
Any pair of points pOL and
q0OR with d(p,q) <3 must
lie in band
No two points can be in
82{ /) the same green box
a2
8 [

L R
Any pair of points pOL and
qOR with d(p,q) <6 must
lie in band
3 [
13
‘ A clever geometric idea

R

L

Any pair of points pOL and
qOR with d(p,q) < must
lie in band

No two points can be in
s2{

the same green box

Only need to check pairs
of points up to 2 rows
above and below -

At most 15 other points!

‘ ’ Closest Pair Recombining

= Sort points by y coordinate ahead of time

= On recombination only compares each point
in LOR to the 12 points above it in the y
sorted order

= If any of those distances is better than &
replace (p,q) by the best of those pairs

= O(nlog n) for x and y sorting at start

= Two recursive calls on problems on half size
= O(n) recombination

= Total O(n log n)

Sometimes two sub-problems aren't

| enough

= More general divide and conquer

= You've broken the problem into a different
sub-problems

= Each has size at most n/b

= The cost of the break-up and recombining
the sub-problem solutions is O(nk)

= Recurrence
= T(n)< alf(n/b)+cm@

Master Divide and Conquer

| ’ Recurrence

» If T(n)< al(n/b)+cm@k for n>b then
« if a>bkthen T(n)is ©(n9#)

= if a<bkthen T(n)is O(nk)
= if a=bk then T(n) is ®(n* log n)

= Works even if it is [n/b | instead of n/b.

| Proving Master recurrence

Problem size - r(n)=aT(n/b)+cnk # probs

n °
N 1
.
: - ‘0
LS
n/b e o °
.o NS a
. %
- - 'o : - '0
/b2 RS
n e o e o e a2
:n‘o :l‘o
- '. - '.
b s ., s .,
[] [] [] []
D ‘0 0 ‘0
" .
g 0‘ : ’.
1 K 3 G .
e o ° o o e gd

‘ ’ Proving Master recurrence

n

] a 1
- .‘
- H ‘0
c e o o
b % .e ’. a
> > .
, © R
n/b2 i o o e o o 72
o s coe
RIS S,
.. .0 .. .0
b [] [] [] []
..I‘Q ..I‘Q
R S
1 e o o e o o gd
T(1)=c

20

| Proving Master recurrence

Problem sizé 1(n)=arr(n/b)+c@k #probs cost
B RN ¥ Lo
nb < ¢ o o a K/pk
.o ., c@m*/b
n/b2 E e o e o o 32 c@2Mk/b2k
=cBX(a/bk)]
b | FETE
K ", S, k(a/bk)d
1 e o o e o o gd cn*(a/b)
=clad

21

’ Geometric Series

= S =t+tr +tr2+ .+t
3 = tr +tr2+ .+t
= (r-1)S =trn - t

= SO S=t (r" -1)/(r-1) if r#1.

= Simple rule
= If r #1 then S is a constant times largest
term in series

| Total Cost

= Geometric series
= ratio a/bk
= d+1=log,n +1 terms
= firstterm cnk, lastterm cad
= If a/bk=1
= all terms are equal T(n) is ©(nk log n)
= If a/bk<l
= first term is largest T(n) is ©(nk)
= If a/bk>1 log 1
= lastterm is largest T(n) is ©(a%)=0(a "
(To see this take log, of both sides)

) =6(

log,a
n o)

23

22

’ Multiplying Matrices

ail aiZ a13 a14 QJ b12 bu bM
a?l a22 a?ﬁ a24 . b21 b22 b23 bzA
%G B A G| by by By by

Ay 8, A 3y b41 b42 b43 b44

= n® multiplications, n3-n? additions

ahb,+ab, tab,tab, ab,+tab,+ab,+ab, o ab,tab,+ab,+ab,
L btk tad, tah, ab,tab,tad, tab, o ab,tab,tadtab,
by +agy ady tahy A, tadh, tab, taud, o Al tad, tadb,taub,
ah, tak, tady, tab, ab,tab,rab,rab, o ab,rab,tad,rah,

24

| Multiplying Matrices

fori=1ton
forj=1ton
Cli,j]<0
fork=1ton
C[ijI=Cli,j]+Ali KIB[k,]]
endfor
endfor
endfor

25

’ Multiplying Matrices

a %A a na b
a?l a22 a?ﬁ a24 . b21 b22 bZG] bZA
a, a, a, a,| |by b, by by

[Bn Q& @y 8y ,b41 b42 b43 b44

o, + ey, tadby, m abytab, o ab.tab,+tab,+rab,]
- * by tah, |ab,tabyrad, tab, o abtab,tadytakb,

aby +agdy tady tahy A, tad, tadb,tab, o al,tad,tad,tab,
aalkh +a b, tady, +ab, ab,+tab,+ap,+ab, o apb,+tab,tadb,+ aMbAA

26

| Multiplying Matrices

a a w [by b, by hy
8n By (B 3|, by by, by by
8y Ap By Ay | [by by |by by
aAl aAZ a43 aM_ bAl bAZ b43 bM

311111*'31}121 ad,+ah, o aprab,rah,rab, |
- b A+ + 3 | B, + A, Had, A, | o Ay tad tadytakb,
ah, tagh, rahy +ah, ab,tad,tad,tab, o ab,tab,rab,tab,
aby+agdy tady tab, ad,tad,tad,tab, o adtady,tad,tadb,]

27

’ Multiplying Matrices

a, a,|a; a, by, b,
{af‘l%zl af‘l@J m?’lbzz |E;Blﬁz4

F« 3| B aMH B. By, By
ay, 28, a43AZ§44 b, 2b,, | by 28,

allq1+612t)21+ai 1 q2+a1}¥2+81&2+614 2b24 i;)jd“-aiA 44
|| 200+ a0, +3d0; 3&&2@3@ +3 0, a0 | Sﬁ% @;b} +’§ng£ Ban,

%lql‘*%ﬁl ﬁ %41 a?»& +aa§332+as4b42| %1q4+%£4+%+%4b

ah,rah,+ LER2REBL ad, ol o dbarRim AR

28

| Simple Divide and Conquer

An | A IBll | BlZ]
Axn | A, l521 | BzzJ

A1B1tABy | A11B1o+AB o

A2B11tA2B, | A2B1otA;B,,
= T(n)=8T(n/2)+4(n/2)?=8T(n/2)+n?

= 82250 T(n) is
O(n“**) = O(N%*) = On°)

Strassen’s Divide and Conquer

| ’ Algorithm

= Strassen’s algorithm

= Multiply 2x2 matrices using 7 instead of 8
multiplications (and lots more than 4 additions)

= T(N)=7 T(n/2)+cn?
. 7522 50 T(n)is ©(n"%2") which is O(n2#1-)

= Fastest algorithms theoretically use O(n2376) time
= not practical but Strassen’s is practical
provided calculations are exact and we stop
recursion when matrix has size about 100

(maybe 10)
30

_ The algorithm

P1—Ap(By+B,y); Py Ap(B1+By)
Ps—(A1-AR)Bui Py (Axn-Az)By
Ps (A22 - A12)(le - Bzz)

P6 < (All - A21)(BlZ - Bll)

P7— (Az1- A)(B11tBy)

Ciy = Py+P5; Cip - Py+P3+Pg - Py
Co1 = P1#P+Ps+P; | Copy - Py*P,

31

Another Divide &Conquer Example:

’ Multiplying Faster

= If you analyze our usual grade school
algorithm for multiplying numbers
= O(n?) time
= On real machines each “digit” is, e.g., 32 bits long
but still get ©(n?) running time with this algorithm
when run on n-bit multiplication
= We can do better!

= We'll describe the basic ideas by multiplying
polynomials rather than integers

= Advantage is we don’t get confused by worrying
about carries at first

32

_ Notes on Polynomials

= These are just formal sequences of
coefficients

= when we show something multiplied by x it just
means shifted k places to the left — basically no

work
) AX2 +2x + 2
Usual polynomial x2- 3x +1
multiplication AX2 +2X + 2
-12x3 - 6x2 - 6x
4x4 + 2x3 +2x2
4x4 -10x3 +0x2 - 4x + 2

33

. ’ Polynomial Multiplication

= Given:
= Degree n-1 polynomials P and Q
= P=a,ta x+a,x?+ ... +a,,X"2+a, ,x"
= Q=by+b,x+b, x>+ ... +b x"2+b ,x"
= Compute:
= Degree 2n-2 Polynomial P Q
= PQ=agby + (agh,+a;bg) x + (agh,+a,b, +a,by) x?
+..t+ (@b, ta, b)) X208 +a b, x22

= Obvious Algorithm:

= Compute all a;b; and collect terms

N b
= ©(n?) time “

_ Naive Divide and Conquer

= Assume n=2k
s P=(a,+a; X+a,x2+..+a,xk2+a xk1)+
(@ +ag, x + o A XR2 + X XK
=P, + P, xk where P, and P, are degree k-1
polynomials
= Similarly Q = Q, + Q, x¥
= PQ = (Pg+Px*)(Qu+Q x¥)
= PoQq + (P1Q*+PoQy)xk + P,Q;x%
= 4 sub-problems of size k=n/2 plus linear combining
= T(n)=40(n/2)+cn Solution T(n) = ©(n?)

35

_ ’ Karatsuba’s Algorithm

= A better way to compute the terms
= Compute
= A « PyQp
«B « P,Q,
= C « (Py+P)(Qu+Qy) = PoQy+P,Qu+PyQ,+P,Q;
= Then
« PoQ;+P,Q, = C-A-B
= S0 PQ=A+(C-A-B)xk+Bx2
= 3 sub-problems of size n/2 plus O(n) work
= T(N) =3 T(n/2) +cn

= T(n) = O(n%) where a = log,3 = 1.59...
36

Karatsuba :

. [A]
| Details C—Md 1
[B]
I R |
PolyMul(P, Q): 2n-1 n n/i2 0

/I P, Q are length n =2k vectors, with P[i], Q[i] being
/I the coefficient of x' in polynomials P, Q respectively.

/' Let Pzero be elements 0..k-1 of P; Pone be elements k..n-1
/I Qzero, Qone : similar

If n=1 then Return(P[0]*Q[0]) else

A ~ PolyMul(Pzero, Qzero); //resultis a (2k-1)-vector
B ~ PolyMul(Pone, Qone); /I ditto

Psum ~ Pzero + Pone; /I add corresponding elements
Qsum ~ Qzero + Qone; /1 ditto

C — polyMul(Psum, Qsum); /I another (2k-1)-vector

Mid - C-A-B; 1/ subtract correspond elements
R ~ A + Shift(Mid, n/2) +Shift(B,n) // a (2n-1)-vector

Return(R);

37

| ’ Multiplication

= Polynomials
= Naive: ©(n?)
= Karatsuba: ©(n'9-)
= Best known: ©(n log n)
= "Fast Fourier Transform*
= FFT widely used for signal processing
= Integers
= Similar, but some ugly details re: carries, etc.
gives ©(n log n loglog n),
= mostly unused in practice except for symbolic
manipulation systems like Maple

38

Hints towards FFT:

| Interpolation

Given set of values at 5 points

39

Hints towards FFT:

) ’ Interpolation

Given set of values at 5 points
Can find unique degree 4 polynomial
going through these points

40

| Interpolation

= Given values of degree n-1 polynomial R at n
distinct points y,,...,y,
= R(yy),-..R(Yp)

= Compute coefficients c,...,c,; such that
s R(X)=Cq+C X+C X%+, +C, X1

= System of linear equations in c,...,C,,;
Co +C1Y1+CY 1 %+...+Co Y, =R(yy)

5 el known
Co +C1YpHCoY %+ +C 1Yo =R(Y,)

unknown
C0 +C1yn+c2yn2+' . '+Cn-1ynn-1:R(yn)

41

Interpolation:
) n equations in n unknowns

= Matrix form of the linear system
1y, y? oy e R(y1)
1y, y22 o yo" [y R(Y2)
c, |=| .

1 yn yn2 ynn-1 Cn-l R(yn)

= Fact: Determinant of the matrix is I'qu. viy)
which is not 0 since points are distinct
= System has a unique solution c,,...,C, ;

42

Hints towards FFT:

| Evaluation & Interpolation

ordinary polynomial

p: ?)O'il""'in-l multiplication ©(n?) R.C.C c
Q: bg,by-byy C, < Yab, C0:C1s--1Con1

evaluation e interpolation
atyo,-Yana from Yo,....Y2n1
(?) 0o(?)
point-wise
P(¥0).Q(Yo) multiplication R(Yo) < P(Yo)[@(Yo)

P(y1),Q(y1) of numbers O(n) R(y,) < P(y,)[@(y,)
P(an-l).: Q(yzn-l)

RO20.2) PYn) @¥200)

43

Karatsuba'’s algorithm and evaluation

’ and interpolation

= Strassen gave a way of doing 2x2 matrix multiplies
with fewer multiplications
= Karatsuba's algorithm can be thought of as a way of
multiplying degree 1 polynomials (which have 2
coefficients) using fewer multiplications
= PQ=(P;+P,2)(Q*Q;2)
=PyQo + (P1Qu+PQ;)z + P,Q,2?
= Evaluate at 0,1,-1 (Could also use other points)
= A =P(0)Q(0)=P,Q,
= C=P(1)Q(1)=(Pe+P)(Qs+Q;)
= D=P(-1)Q(-1)=(Py-P,)(Q,-Q1)
= Interpolating, Karatsuba’s Mid=(C-D)/2 and B=(C+D)/2-A

44

Hints towards FFT:

) Evaluation at Special Points

= Evaluation of polynomial at 1 point takes O(n)
= S0 2n points (naively) takes O(n?)—no savings

= Key trick:
= use carefully chosen points where there’'s some

sharing of work for several points, namely various
powers of (y=g2Tn | =.[1

= Plus more Divide & Conquer.

= Result:
= both evaluation and interpolation in O(n log n)
time

45

| ’ Fun facts about w=e2™ /" for even n

s wW=1

- w/z =-1

= W2k = -) for all values of k

= WP = e /M where m=n/2

= W = cos (2kmn)+i sin (2kmen) so can compute
with powers of W

46

| The key idea for n even

= P(w) = ayta,wta,w’+aw’+a,wt.. . +a, ot
= g +a,uF +a,0t +...+ a, 02
+ a,wragw’ +ageP +...+a, W't
= Peven(6F) + 0P ()
= P(-w)=a,-a,wta,u? -a;er+a,uf-... -a, "t
= g, ta,uy +a,ut ...+ a,,0"?
- (a,wtayw? +agsw’ +...+a, w't)
= Peyen(0?) - 0P g4 (?)
where P, (X) = ag+a X +a,x? +...+ a, ,x"21

and Py (X) = a;+tagx +agx? +...+a, x"1
47

The recursive idea for
) n a power of 2

= Also
= P, and P, have degree n/2 where
= P(w):Peven(o)Zk)+°j(Podd (O)ZK)

- P('(‘j()=Peven((n2k)'dPodd(("Zk)
= Recursive Algorithm A isemn where m=n/2
. so problems are of same
= Evaluate P, at 1070, type but smaller size

= Evaluate Py, at 1,0?,,...,00"2

= Combine to compute P at 1,w,e?,...,w"21

= Combine to compute P at -1,-@,-0%,...,-"2t
(|e at wlzy wl2+1 , w/2+21_._1 “,1-1)

48

_ Analysis and more

= Run-time
= T(n)=20(n/2)+cn so T(n)=0O(n log n)
= So much for evaluation ... what about
interpolation?
= Given
= 1,=R(1), r;=R(w), r,=R(tA),..., 1 =R(w"?)
= Compute
= Cg, Cpye.,Cpg S.t R(X)=CoH+C X +...4C X1

49

Interpolation = Evaluation:

’ strange but true

= Weird fact:

= If we define a new polynomial
S(X) =rg+ ryX +rx2+..+r,,x"t whererg, ry, ..., 14
are the evaluations of R atl, w, ..., !
= Then ¢,=S(w¥)/n for k=0,...,n-1

= So...

= evaluate S at 1,w!,w?,...,w™D then divide each
answer by n to get the c,...,C,.,

= w? behaves just like wdid so the same O(n log n)
evaluation algorithm applies !

50

_ Divide and Conquer Summary

= Powerful technique, when applicable

= Divide large problem into a few smaller
problems of the same type

= Choosing sub-problems of roughly equal size
is usually critical

= Examples:

= Merge sort, quicksort (sort of), polynomial
multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, ...

51

Why this is called the discrete Fourier

. ’ transform

= Real Fourier series

= Given a real valued function f defined on [0,21]
the Fourier series for f is given by
f(x)=ayta, cos(x) + a, cos(2x) +...+ a,, cos(mx) +...
where

1211
— | f(x) cos(mx) dx
a3 | 0 cOS(MX)

= is the component of f of frequency m

= In signal processing and data compression one
ignores all but the components with large a,, and

there aren’t many since
52

Why this is called the discrete Fourier

. transform

= Complex Fourier series
= Given a function f defined on [0,21]
the complex Fourier series for f is given by
f(z)=botb, ez +b,edz + . +b emz+. .
where

lZn
= —|fz7e™*dz
by= 5] 1@

is the component of f of frequency m

= If we discretize this integral using values at n

equally spaced points between 0 and 2twe get

_ = =
bn ==>"f e ==%"f w*" where f=f(2krn)
Nico Ni=

just like interpolation! 53

