
1

CSE 421
Introduction to Algorithms

Summer 2007

NP-Completeness

(Chapter 8)

3

Some Algebra Problems
(Algorithmic)

Given positive integers a, b, c

Question 1: does there exist a positive integer x
such that ax = c ?

Question 2: does there exist a positive integer x
such that ax2 + bx = c ?

Question 3: do there exist positive integers x and y
such that ax2 + by = c ?

4

5

6

8

Some Problems

Independent-Set:
Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that
no two vertices in U are joined by an edge.

Clique:
Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that
every pair of vertices in U is joined by an edge.

9

A Brief History of Ideas

From Classical Greece, if not earlier, "logical
thought" held to be a somewhat mystical ability

Mid 1800's: Boolean Algebra and foundations of
mathematical logic created possible "mechanical"
underpinnings

1900: David Hilbert's famous speech outlines
program: mechanize all of mathematics?
http://mathworld.wolfram.com/HilbertsProblems.html

1930's: Gödel, Church, Turing, et al. prove it's
impossible

10

More History

1930/40's
What is (is not) computable

1960/70's
What is (is not) feasibly computable

Goal – a (largely) technology-independent theory of time
required by algorithms
Key modeling assumptions/approximations

Asymptotic (Big-O), worst case is revealing

Polynomial, exponential time – qualitatively different

11

22n

2n/10

1000n2

22n

2n/10

1000n2

Polynomial vs
Exponential Growth

12
4140n0 n0 +12n

410400n0 n0+102n /10

1.25 x 104104n0 3√2 n0O(n3)
1.4 x 106106n0 √2 n0O(n2)
2 x 10121012n0 2n0O(n)

E.g. T=1012IncreaseComplexity

Another view of Poly vs Exp

Next year's computer will be 2x faster. If I can
solve problem of size n0 today, how large a problem
can I solve in the same time next year?

13

Polynomial versus exponential

We’ll say any algorithm whose run-time is
polynomial is good
bigger than polynomial is bad

Note – of course there are exceptions:
n100 is bigger than (1.001)n for most practical values of n
but usually such run-times don’t show up
There are algorithms that have run-times like O(2sqrt(n)/22)
and these may be useful for small input sizes, but they're
not too common either

14

"Problem" – the general case
Ex: The Clique Problem: Given a graph G and an integer
k, does G contain a k-clique?

"Problem Instance" – the specific cases
Ex: Does contain a 4-clique? (no)
Ex: Does contain a 3-clique? (yes)

Decision Problems – Just Yes/No answer
Problems as Sets of "Yes" Instances

Ex: CLIQUE = { (G,k) | G contains a k-clique }
E.g., (, 4) ∉ CLIQUE
E.g., (, 3) ∈ CLIQUE

Some Convenient Technicalities

15

Decision problems

Computational complexity usually analyzed using
decision problems

answer is just 1 or 0 (yes or no).

Why?
much simpler to deal with
deciding whether G has a k-clique, is certainly no harder
than finding a k-clique in G, so a lower bound on deciding
is also a lower bound on finding
Less important, but if you have a good decider, you can
often use it to get a good finder. (Ex.: does G still have a
k-clique after I remove this vertex?)

16

The class P

Definition: P = set of (decision) problems solvable
by computers in polynomial time. i.e.,

T(n) = O(nk) for some fixed k.
These problems are sometimes called tractable
problems.

Examples: sorting, shortest path, MST, connectivity,
RNA folding & other dyn. prog. – most of 421

(exceptions: Change-Making/Stamps, TSP)

17

Beyond P?

There are many natural, practical problems for
which we don’t know any polynomial-time
algorithms

e.g. CLIQUE:
Given an undirected graph G and an integer k, does G
contain a k-clique?

e.g. quadratic Diophantine equations:
Given a, b, c ∈ N, ∃ x, y ∈ N s.t. ax2 + by = c ?

18

Some Problems

Independent-Set:
Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that
no two vertices in U are joined by an edge.

Clique:
Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| ≥ k such that
every pair of vertices in U is joined by an edge.

19

Some More Problems

Euler Tour:
Given a graph G=(V,E) is there a cycle traversing each
edge once.

Hamilton Tour:
Given a graph G=(V,E) is there a simple cycle of length
|V|, i.e., traversing each vertex once.

TSP:
Given a weighted graph G=(V,E,w) and an integer k, is
there a Hamilton tour of G with total weight ≤ k.

20

Satisfiability

Boolean variables x1, ..., xn
taking values in {0,1}. 0=false, 1=true

Literals
xi or ¬xi for i = 1, ..., n

Clause
a logical OR of one or more literals
e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

CNF formula
a logical AND of a bunch of clauses

21

Satisfiability

CNF formula example
(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable

the one above is, the following isn’t
x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

Satisfiability: Given a CNF formula F, is it satisfiable?

22

Satisfiable?
(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧
(x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ z) ∧
(¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ z) ∧
(x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧
(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧
(¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧
(x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

23

More History – As of 1970

Many of the above problems had been
studied for decades
All had real, practical applications
None had poly time algorithms; exponential
was best known

But, it turns out they all have a very deep
similarity under the skin

24

Hamilton Tour
3-SAT

Max Cut

Longest Path

Similar pairs; seemingly
different computationally

Superficially different;
sim

ilar com
putationally

Some Problem Pairs

Euler Tour

2-SAT

Min Cut
Shortest Path

25

Common property of these problems:
Discrete Exponential Search

There is a special piece of information, a short hint
proof or certificate, that allows you to efficiently (in
polynomial-time) verify that the YES answer is
correct. BUT, this hint might be very hard to find –
buried in an exponentially large search space
e.g.

TSP: one tour among many, “know it when you see it”
Independent-Set, Clique: the vertex set U; ditto
Satisfiability: an assignment that makes formula true; ditto
Quadratic Diophantine eqns: the numbers x & y; ditto

26

The complexity class NP

NP consists of all decision problems where

You can verify the YES answers efficiently (in polynomial
time) given a short (polynomial-size) hint

And

No hint can fool your polynomial time verifier into saying
YES for a NO instance

(implausible for all exponential time problems)

one among exponentially many;
know it when you see it

27

More Precise Definition of NP

A decision problem is in NP iff there is a
polynomial time procedure v(-,-), and an
integer k such that

for every YES problem instance x there is a hint
h with |h| ≤ |x|k such that v(x,h) = YES
and
for every NO problem instance x there is no
hint h with |h| ≤ |x|k such that v(x,h) = YES

“Hints” sometimes called “Certificates”

28

Example: CLIQUE is in NP

procedure v(x,h)
if
 x is a well-formed representation of a graph
 G = (V, E) and an integer k,
and
 h is a well-formed representation of a k-vertex
 subset U of V,
and

U is a clique in G,
then output "YES"
else output "I'm unconvinced"

29

Is it correct?

For every x = (G,k) such that G contains a k-clique,
there is a hint h that will cause v(x,h) to say YES,
namely h = a list of the vertices in such a k-clique

and
No hint can fool v into saying yes if either x isn't
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any cliques of size k (the
interesting case)

30

Another example: SAT ∈ NP

Hint: the satisfying assignment A
Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)

Syntax: True iff F is a well-formed formula & A is a
truth-assignment to its variables

Satisfies: plug A into F and evaluate

Correctness:
If F is satisfiable, it has some satisfying assignment A, and
we’ll recognize it
If F is unsatisfiable, it doesn’t, and we won’t be fooled

31

Keys to showing that
a problem is in NP

What's the output? (must be YES/NO)
What's the input? Which are YES?

For every given YES input, is there a hint that
would help? Is it polynomial length?

OK if some inputs need no hint

For any given NO input, is there a hint that
would trick you?

32

NP = Polynomial-time
verifiable

P = Polynomial-time
solvable

Complexity Classes

P

NP

33

The most obvious algorithm for most of these
problems is brute force:

try all possible hints; check each one to see if it works.
Exponential time:

2n truth assignments for n variables

n! possible TSP tours of n vertices

 possible k element subsets of n vertices

etc.

…and to date, every alg, even much less-obvious
ones, are slow, too

!
"

#
$
%

&

k

n

Solving NP problems without hints

34

Problems in P can also be
verified in polynomial-time

Short Path: Given a graph G with edge lengths, is there a
path from s to t of length ≤ k?

Verify: Given a purported path from s to t, is it a path, is its
length ≤ k?

Small Spanning Tree: Given a weighted undirected graph
G, is there a spanning tree of weight ≤ k?

Verify: Given a purported spanning tree, is it a spanning tree, is
its weight ≤ k?

(But the hints aren’t really needed in these cases…)

35

nk

2nk

accept

Needle
in the

haystack

P vs NP vs Exponential Time

Theorem: Every problem in
NP can be solved
deterministically in
exponential time

Proof: “hints” are only nk

long; try all 2nk possibilities,
say by backtracking. If any
succeed, say YES; if
all fail, say NO.

36

NP

P

Exp
Worse…

P and NP

Every problem in P is in NP
one doesn’t even need a hint
for problems in P so just
ignore any hint you are given

Every problem in NP is in
exponential time

I.e., P ⊆ NP ⊆ Exp
We know P ≠ Exp, so either
P ≠NP, or NP ≠ Exp (most
likely both)

37

P vs NP

Theory
P = NP ?
Open Problem!

I bet against it

Practice
Many interesting, useful,
natural, well-studied
problems known to be
NP-complete
With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances

38

NP: Summary so far

P = “poly time solvable”
NP = “nondeterministic poly time solvable/verifiable”
Defined only for decision problems, but fundamentally about

search: can cast many problems as searching for a poly size,
poly time verifiable “solution” in a 2poly size “search space”.

Examples:
is there a big clique? Space = all big subsets of vertices; solution =

one subset; verify = check all edges

 is there a satisfying assignment? Space = all assignments; solution
= one asgt; verify = eval formula

Sometimes we can do that quickly (is there a small spanning
tree?); P = NP would mean we can always do that.

39

NP: Yet to come

NP-Completeness: the “hardest” problems in
NP.
Surprisingly, most know problems in NP are
equivalent, in a strong sense, despite great
superficial differences.

Reductions: key to showing those facts.

41

Does P = NP?

This is an open question.
To show that P = NP, we have to show that every
problem that belongs to NP can be solved by a
polynomial time deterministic algorithm.
No one has shown this yet.
(It seems unlikely to be true.)
(Also seems daunting: there are infinitely many problems in
NP; do we have to pick them off one at a time…?)

42

More Connections

Some Examples in NP
Satisfiability
Independent-Set
Clique
Vertex Cover

Hints help on all, but all seem hard to solve without
Very surprising fact:

Fast solution to any gives fast solution to
all, & to every other problem in NP!

43

NP-complete Problems

Seems likely that there are problems in NP – P; if
so, none can be solved in polynomial time.
Non-Definition: NP-complete = the hardest
problems in the class NP. (Formal definition later.)

Interesting fact: If any one NP-complete problem
could be solved in polynomial time, then all NP
problems could be solved in polynomial time.

44

NP = Poly-time verifiable

P = Poly-time solvable

NP-Complete =
“Hardest” problems in
NP

Complexity Classes

NP

P

NP-Complete

45

The class NP-complete (cont.)

Thousands of important problems have been shown
to be NP-complete.

Fact (Dogma): The general belief is that there is no
efficient algorithm for any NP-complete problem,
but no proof of that belief is known.

Examples: SAT, clique, vertex cover, Hamiltonian
cycle, TSP, bin packing.

46

NP

P

NP-Complete

 sorting
 MST
 shortest paths
 BCC
 max flow

 SAT
 clique
 vertex cover
 traveling salesman
 QDE

Complexity Classes of Problems

47

Is all of this useful for anything?

Earlier in this class we learned techniques for
solving problems in P.

Question: Do we just throw up our hands if
we come across a problem we suspect not to
be in P?

48

Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:
1) Prove your problem is NP-hard or -complete
 (a common, but not guaranteed outcome)
2) Come up with an algorithm to solve the problem
usually or approximately.

49

Reductions: a useful tool

Definition: To reduce A to B means to solve A,
given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2)nd

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

50

Another Example of Reduction

reduce BIPARTITE_MATCHING to MAX_FLOW

s t

All capacities = 1

Is there a flow of size k?
u v

Is there a matching of size k?

f

51

“complexity of A” ≤ “complexity of B” + “complexity of reduction”

Reductions: Why useful

Definition: To reduce A to B means to solve A,
given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A
(nearly as fast; takes some time to set up call, etc.)

If every algorithm for A is slow, then no algorithm
for B can be fast.

52

SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF) is
satisfiable if there exists a truth assignment of 0’s and 1’s
to its variables such that the value of the expression is 1.
Example:
S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
Example above is satisfiable. (We can see this by setting
x=1, y=1 and z=0.)

53

NP-complete problem:
Vertex Cover

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of
size ≤ k such that every edge in E is incident to at
least one vertex in C.

Example: Vertex cover of size ≤ 2.

In NP? Exercise

54

3SAT ≤p VertexCover

55

3SAT ≤p VertexCover

56

3SAT ≤p VertexCover

57

k=6

3SAT ≤p VertexCover

58

k=6

x1 x1

x3

x2 ¬x2

¬x3 ¬x3

¬x1

x3

3SAT ≤p VertexCover

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

59

f =

3-SAT Instance:
– Variables: x1, x2, …
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

VertexCover Instance:
– k = 2q
– G = (V, E)
– V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }

– E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }

3SAT ≤p VertexCover

60

k=6

3SAT ≤p VertexCover

61

Correctness of “3SAT ≤p VertexCover”

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.
Correctness:
 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward.
 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover:
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover
triangle edges; only true literals (but perhaps not all true literals) uncovered, so
at least one end of every (x, ¬x) edge is covered.
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (x, ¬x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > 1
uncovered node, hence an uncovered edge.)

62

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)

x1 x1

x3

x2 ¬x2

¬x3 ¬x3

¬x1

x3

Utility of “3SAT ≤p VertexCover”

Suppose we had a fast algorithm
for VertexCover, then we could
get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Vertex
Cover instance y = f(w) as above, run the fast
VC alg on y; say “YES, w is satisfiable” iff VC alg says
“YES, y has a vertex cover of the given size”

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
VertexCover either.

63

“3SAT ≤p VertexCover” Retrospective

Previous slide: two suppositions
Somewhat clumsy to have to state things that
way.

Alternative: abstract out the key elements,
give it a name (“polynomial time reduction”),
then properties like the above always hold.

64

Polynomial-Time Reductions

Definition: Let A and B be two problems.
We say that A is polynomially reducible to B (A ≤p B)
if there exists a polynomial-time algorithm f that
converts each instance x of problem A to an
instance f(x) of B such that:

x is a YES instance of A iff f(x) is a YES instance of B

x ∈ A ⇔ f(x) ∈ B

65

polynomial

W
hy

 th
e

no
ta

tio
n?

Polynomial-Time Reductions (cont.)

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f”

(1) A ≤p B and B ∈ P ⇒ A ∈ P
(2) A ≤p B and A ∉ P ⇒ B ∉ P
(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)

66

Using an Algorithm for B to
Solve A

Algorithm
to compute f

x Algorithm
to solve B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to solve A

“If A ≤p B, and we can solve B in polynomial time,
then we can solve A in polynomial time also.”

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).
How long does the above algorithm for A take?

67

Two definitions of “A ≤p B”

Book uses more general definition: “could solve A
in poly time, if I had a poly time subroutine for B.”

Defn on previous slides is special case where you
only get to call the subroutine once, and must
report its answer.

This special case is used in ~98% of all reductions

K
ar

p

C

oo
k

68

Definition of NP-Completeness

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and

(2) B is NP-hard.

69

Proving a problem is NP-complete

Technically, for condition (2) we have to show that
every problem in NP is reducible to B.
(Yikes! Sounds like a lot of work.)

For the very first NP-complete problem (SAT) this
had to be proved directly.
However, once we have one NP-complete problem,
then we don’t have to do this every time.
Why? Transitivity.

70

Re-stated Definition

Lemma: Problem B is NP-complete if:
(1) B belongs to NP, and

(2’) A is polynomial-time reducible to B, for some
problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to
B.

71

Usefulness of Transitivity

Now we only have to show L’ ≤p L , for some
NP-complete problem L’, in order to show that
L is NP-hard. Why is this equivalent?
1) Since L’ is NP-complete, we know that L’ is

NP-hard. That is:
∀ L’’ ∈ NP, we have L’’ ≤p L’

2) If we show L’ ≤p L, then by transitivity we
know that: ∀ L’’∈ NP, we have L’’ ≤p L.

Thus L is NP-hard.

72

Ex: VertexCover is NP-complete

3-SAT is NP-complete (shown by S. Cook)
3-SAT ≤p VertexCover

VertexCover is in NP (we showed this earlier)
Therefore VertexCover is also NP-complete

So, poly-time algorithm for VertexCover would give
poly-time algs for everything in NP

73

NP-complete problem: Clique

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of
size ≥ k such that all vertices in C are connected to
all other vertices in C.

Example: Clique of size ≥ 4

In NP? Exercise

74

k=3

3SAT ≤p Clique

75

k=3

3SAT ≤p Clique

76

k=3

3SAT ≤p Clique

77

k=3

3SAT ≤p Clique

78

x1 x1 x3

x2 ¬x2

¬x3 ¬x3 ¬x1

k=3

3SAT ≤p Clique

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

79

3-SAT Instance:
– Variables: x1, x2, …
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

Clique Instance:
– K = q
– G = (V, E)
– V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }

– E = { ([i,j], [k,l]) | i ≠ k and yij ≠ ¬ykl }

3SAT ≤p Clique

f =

80

Correctness of “3-SAT ≤p Clique”

Summary of reduction function f:
Given formula, make graph G with column of nodes per clause, one node per
literal. Connect each to all nodes in other columns, except complementary
literals (x, ¬x). Output graph G plus integer k = number of clauses. Note: f does
not know whether formula is satisfiable or not; does not know if G has k-clique;
does not try to find satisfying assignment or clique.
Correctness:
Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward.
Show c in 3-SAT iff f(c)=(G,k) in Clique:
(⇒) Given an assignment satisfying c, pick one true literal per clause. Show
corresponding nodes in G are k-clique.
(⇐) Given a k-clique in G, clique labels define a truth assignment; show it satisfies
c. Note: literals in a clique are a valid truth assignment [no “(x, ¬x)” edges] & k
nodes must be 1 per column, [no edges within columns].

81

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of at most 3
colors to the vertices in G such that no two
adjacent vertices have the same color.

Example:

In NP? Exercise

82

T

F
N

A 3-Coloring Gadget:

In what ways can this be 3-colored?

83

T

F
N

output

inputs

Exercise: find
all colorings
of 5 nodes

A 3-Coloring Gadget:
"Sort of an OR gate"

if any input is T, the output can be T
if output is T, some input must be T

84

3-SAT Instance:
– Variables: x1, x2, …
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

3Color Instance:
– G = (V, E)
– 6 q + 2 n + 3 vertices
– 13 q + 3 n + 3 edges
– (See Example for details)

3SAT ≤p 3Color

f =

x1

¬x1

x2

¬x2

T

F
N

 (x1 ∨ ¬x1 ∨ ¬x1)
∧

(¬x1 ∨ x2 ∨ ¬x2)
3SAT ≤p 3Color Example

6 q + 2 n + 3 vertices 13 q + 3 n + 3 edges

86

Correctness of “3SAT ≤p 3Coloring”

Summary of reduction function f:
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per variable, 2
“or” gadgets per clause, connected as in example.
Note: again, f does not know or construct satisfying assignment or coloring.
Correctness:
 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; graph looks messy, but pattern is basically straightforward.
 • Show c in 3-SAT iff f(c) is 3-colorable:
(⇒) Given an assignment satisfying c, color literals T/F as per assignment; can
color “or” gadgets so output nodes are T since each clause is satisfied.
(⇐) Given a 3-coloring of f(c), name colors T-N-F as in example. All square
nodes are T or F (since all adjacent to N). Each variable pair (xi, ¬xi) must have
complementary labels since they’re adjacent. Define assignment based on colors
of xi’s. Clause “output” nodes must be colored T since they’re adjacent to both
N & F. By fact noted earlier, output can be T only if at least one input is T,
hence it is a satisfying assignment.

87

Planar 3-Coloring is also NP-Complete

==>

89

SAT is NP-complete

Rough idea of proof:

(1) SAT is in NP because we can guess a truth
assignment and check that it satisfies the expression
in polynomial time.
(2) SAT is NP-hard because …..

Cook proved it directly, but easier to see via an
intermediate problem – Circuit-SAT

90

Detailed Logic Diagram,
Intelorola Pentathlon® 6600

91

Detailed Logic Diagram,
Intelorola Pentathlon® 6600

Registers/Latches/Memory

92

Detailed Logic Diagram,
Intelorola Pentathlon® 6600

Registers/Latches/Memory

Combinational Logic,
Large Rat’s Nest of

93

Detailed Logic Diagram,
Intelorola Pentathlon® 6600

Registers/Latches/Memory

Combinational Logic,
Large Rat’s Nest of

94

Detailed Logic Diagram,
Intelorola Pentathlon® 6600

Registers/Latches/Memory

Combinational Logic,
Large Rat’s Nest of

Really,
Really,

Fast Clock

95

P Is Reducible To The
Circuit Value Problem

Registers/Latches/Memory

 Combinational Logic,
Large Rat’s Nest of

Really,
Really,

Fast Clock

Combinational Logic

Combinational Logic

Combinational Logic

Accept?

T

T
Input

96

NP Is Reducible To The
Circuit Satisfiability Problem

Registers/Latches/Memory

Combinational Logic,
Large Rat’s Nest of

Really,
Really

Fast Clock

T

Combinational Logic

Combinational Logic

Combinational Logic

Accept?

T
“Input”

ND
bit

N
D

 b
its

97

To Prove SAT is NP-complete

Show it’s in NP: Exercise
(Hint: what’s an easy-to-check certificate of
satisfiability?)
Pick a known NP-complete problem
& reduce it to SAT

Gee, How about Circuit-SAT?
Good idea; it’s the only NP-complete problem we have
so far
What we need:
a fast, mechanical way to “simulate” a circuit by a formula

98

(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3

Replace with 3-CNF Equivalent:
x1 x2 w1 (x1∧x2)) ¬(w1⇔(x1∧x2))
0 0 0 0 0
0 0 1 0 1 ← ¬x1 ∧ ¬x2 ∧ w1
0 1 0 0 0
0 1 1 0 1 ← ¬x1 ∧ x2 ∧ w1
1 0 0 0 0
1 0 1 0 1 ← x1 ∧ ¬x2 ∧ w1
1 1 0 1 1 ← x1 ∧ ¬x2 ∧ ¬w1
1 1 1 1 0

f() = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨x2∨w1)…

∧ ¬ ∨x1

x2
w1 w2 w3

¬
clause →

Truth Table →
D

N
F D

eM
organ→

C
N

F

∧ ¬ ∨

Circuit-SAT
≤p 3-SAT

99

Correctness of “Circuit-SAT ≤p 3-SAT”

Summary of reduction function f:
Given circuit, add variable for every gate’s value, build clause for each
gate, satisfiable iff gate value variable is appropriate logical function of its
input variables, convert each to CNF via standard truth-table
construction. Output conjunction of all, plus output variable. Note: f
does not know whether circuit or formula are satisfiable or not; does
not try to find satisfying assignment.
Correctness:
Show f poly time computable: A key point is that formula size is linear in
circuit size; mapping basically straightforward.
Show c in Circuit-SAT iff f(c) in SAT:
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by
evaluating the circuit on xi’s gate by gate. Show this satisfies f(c).
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c
(with gate values given by wi’s).

100

Common Errors in
NP-completeness Proofs

Backwards reductions
Bipartiteness ≤p SAT is true, but not so useful.
(XYZ ≤p SAT shows XYZ in NP, does not show it’s
hard.)
Sloooow Reductions
“Find a satisfying assignment, then output…”
Half Reductions
Delete dashed edges in 3Color reduction. It’s still
true that “c satisfiable ⇒ G is 3 colorable”, but 3-
colorings don’t necessarily give good assignments.

101

Coping with NP-Completeness

Is your real problem a special subcase?
E.g. 3-SAT is NP-complete, but 2-SAT is not;
Ditto 3- vs 2-coloring
E.g. maybe you only need planar graphs, or degree 3
graphs, or …

Guaranteed approximation good enough?
E.g. Euclidean TSP within 1.5 * Opt in poly time

Clever exhaustive search may be fast enough in
practice, e.g. Backtrack, Branch & Bound, pruning
Heuristics – usually a good approximation and/or
usually fast

102

5

3

4 6

47
2

5

8

 Example:
 b = 34

NP-complete problem: TSP

Input: An undirected graph
G=(V,E) with integer edge
weights, and an integer b.

Output: YES iff there is a
simple cycle in G passing
through all vertices (once),
with total cost ≤ b.

103

!

lim
n"#

NN

OPT
"#

TSP - Nearest Neighbor
Heuristic

Recall NN Heuristic

Fact: NN tour can be about (log n) x opt, i.e.

(above example is not that bad)

105

5

4

2
5

6

47

8

333

≤4+3

≤5+2+3+5

2x Approximation to
EuclideanTSP

A TSP tour visits all vertices, so contains a
spanning tree, so TSP cost is > cost of min
spanning tree.
Find MST

Find “DFS” Tour

Shortcut
TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP

107

5

3

4

2
5

1.5x Approximation to
EuclideanTSP

Find MST
Find min cost matching
among odd-degree
tree vertices
Cost of matching ≤ TSP/2
Find Euler Tour
Shortcut
Shortcut ≤ ET ≤ MST + TSP/2 < 1.5* TSP

108

Matching ≤ TSP/2

Oval=TSP
Big dots=
odd tree
nodes
Blue, Green
= 2 matchings
Blue + Green ≤ TSP
(by triangle inequality)
So min matching ≤ TSP/2

109

A problem NOT in NP;
A bogus “proof” to the contrary

EEXP = {(p,x) | prog p accepts input x in < 22|x| steps }

NON Theorem: EEXP in NP

“Proof” 1: Hint = step-by-step trace of the
computation of p on x; verify step-by-step

“Proof” II: Hint = a bit; accept iff it’s 1

110

NP

P

Exp
Worse…

NP-C Summary

Big-O – good
P – good
Exp – bad
Exp, but hints help? NP
NP-hard, NP-complete – bad (I bet)
To show NP-complete – reductions
NP-complete = hopeless? – no, but you
 need to lower your expectations:
 heuristics & approximations.

