
1

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

3

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
 Dynamic programming = planning over time.
 Secretary of Defense was hostile to mathematical research.
 Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"
– "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

4

Dynamic Programming Applications

Areas.
 Bioinformatics.
 Control theory.
 Information theory.
 Operations research.
 Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.
 Viterbi for hidden Markov models.
 Unix diff for comparing two files.
 Smith-Waterman for sequence alignment.
 Bellman-Ford for shortest path routing in networks.
 Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.
 Job j starts at sj, finishes at fj, and has weight or value vj .
 Two jobs compatible if they don't overlap.
 Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
 Consider jobs in ascending order of finish time.
 Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by
finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by
weight

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

58

37

26

05

14

03

02

01

-0

p(j)j

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1, 2, ..., j.

 Case 1: OPT selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

 Case 2: OPT does not select job j.
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

!

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j "1){ } otherwise

$
%

optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

3

4
5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
 Sort by finish time: O(n log n).
 Computing p(⋅) : O(n) after sorting by start time.

 M-Compute-Opt(j): each invocation takes O(1) time and either
– (i) returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure Φ = # nonempty entries of M[].
– initially Φ = 0, throughout Φ ≤ n.
– (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

16

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

58

37

26

05

14

03

02

01

-0

optjpjvjj

17

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

 # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

6.4 Knapsack Problem

26

Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not optimal.

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2W = 11

27

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

 Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 }

 Case 2: OPT selects item i.
– accepting item i does not immediately imply that we will have to

reject other items
– without knowing what other items were selected before i, we don't

even know if we have enough room for i

Conclusion. Need more sub-problems!

28

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

 Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w

 Case 2: OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

!

OPT(i, w) =

0 if i = 0

OPT(i "1, w) if wi > w

max OPT(i "1, w), v
i
+ OPT(i "1, w"w

i
){ } otherwise

$
%

&
%

29

Input: n, w1,…,wN, v1,…,vN

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

30

Knapsack Algorithm

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11OPT: { 4, 3 }
value = 22 + 18 = 40

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

31

Knapsack Problem: Running Time

Running time. Θ(n W).
 Not polynomial in input size!
 "Pseudo-polynomial."
 Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

41

String Similarity

How similar are two strings?
 ocurrance

 occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

42

Applications.
 Basis for Unix diff.
 Speech recognition.
 Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
 Gap penalty δ; mismatch penalty αpq.
 Cost = sum of gap and mismatch penalties.

2δ + αCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

αTC + αGT + αAG+ 2αCA

-

Edit Distance

43

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item
occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.
Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

!

cost(M) = "xi y j

(xi, y j)# M

$

mismatch

1 2 4 3 4

+ %
i : xi unmatched

$ + %
j : y j unmatched

$

gap

1 2 4 4 4 4 4 3 4 4 4 4 4

C T A C C -

T A C A T-

G

G
y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

44

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.
 Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.
– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b: OPT leaves yj unmatched.
– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

!

OPT(i, j) =

"

$
$ $

%

$
$
$

j& if i = 0

min

'xi y j
+ OPT(i (1, j (1)

& + OPT(i (1, j)

& + OPT(i, j (1)

"

$

%
$

otherwise

i& if j = 0

45

Sequence Alignment: Algorithm

Analysis. Θ(mn) time and space.
English words or sentences: m, n ≤ 10.
Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) {
 for i = 0 to m
 M[0, i] = iδ
 for j = 0 to n
 M[j, 0] = jδ

 for i = 1 to m
 for j = 1 to n
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],
 δ + M[i-1, j],
 δ + M[i, j-1])
 return M[m, n]
}

