Chapter 6

Dynamic Programming

N\ Algorithm Desio

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.

—— 7 Copyright © 2005 Pearson-Addison Wesley.

% All rights reserved.

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
- Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
. Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

. Bioinformatics.

« Control theory.

- Information theory.

. Operations research.

. Computer science: theory, graphics, AL, systems, ...

Some famous dynamic programming algorithms.
. Viterbi for hidden Markov models.
- Unix diff for comparing two files.
« Smith-Waterman for sequence alignment.
« Bellman-Ford for shortest path routing in networks.
. Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fJ-, and has weight or value v
- Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

J .

» Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
. Consider jobs in ascending order of finish time.
. Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 1000 b
by
weight = 1 a finish
» Time
0 1 2 3 4 5 6 7 8 9 10 11
weight = 1000 b by]
weight
weight=999 '@, a @ @ @ @ @ @ @ @ ?
» Time

0 1 2 3 4 5 6 7 8 9 10 11

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f, < f, <...=<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0. i | p0)
0
1 |0
2 2 0
3 3 0
i 4 I
: 5 0
6 6 2
7 7 3
n 8 |5
0 1 2 3 4 5 6 7 8 9 10 11

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requestsl,?2, .., .

« Case 1: OPT selects job j.
- can't use incompatible jobs { p(j)+1,p(j)+2, ..., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) N

optimal substructure

'
« Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
(/) {max{ v+ OPT(p())), OPT(j—l)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

p(1) =0, p(j) = j-2

1

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
heeded.

Input: n, s;,..,8, £, Vi,V

Sort jobs by finish times so that £, < £, <= ... = £ .
Compute p(1), p(2), .., p(n)

for 3 =1 ton
M[j] = empty <«— global array
M[O0] = O

M-Compute-Opt (j) {
if (M[j] is empty)
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
Computing p(-): O(n) after sorting by start time.

= M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[7]
- (ii) fills in one new entry M[31 and makes two recursive calls

Progress measure ® = # nonempty entries of M[].
- initially ® = O, throughout ® < n.
- (ii) increases ® by 1 = at most 2n recursive calls.

« Overall running time of M-Compute-0pt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

13

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

15

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f, < f, <...=<f,.

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

Vi

Pj

Opt;

16

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution (n)

Find-Solution(j) {
if (3 = 0)
output nothing
else if (v; + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))
else

Find-Solution(j-1)

- # of recursive calls = n = O(n).

17

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
» Givennobjects and a "knapsack."
« Item i weighs w; > O kilograms and has value v;> O.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.

1 1
W= 11 2 6
3 18
4 22
5 28

Greedy: repeatedly add item with maximum ratio v, / w,.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

1

N O O N

26

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

= Case 1: OPT does not select item .
- OPT selects best of {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i, we don't
even know if we have enough room for i

Conclusion. Need more sub-problems!

27

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

= Case 1: OPT does not select item .
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

- Case 2. OPT selects item .
- new weight limit = w - w,
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

[0 if 1=0
OPT(i,w)=30OPT(i-1,w) it w,>w
\max{ OPT(i-1,w), v,+ OPT(i-1,w-w;)} otherwise

28

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

29

Knapsack Algorithm

W+1 >
ﬂ-----ﬂ-ﬂﬂ
o [0 o
{1}-11111111111
el (12} -1E77 717z 7 7 7 7
{1,223y 0 1 6 7 7-1925 25 25 25
{1,234y 0 1 6 7 7 22 24 28 29 29-
{12345}y 0 1 6 7 7 18 22 28 29 34 34-
Item | Value | Weight
OPT: { 4,3} W= 11 ———
value = 22 + 18 = 40
2 6 2
1 (W, > W) 3 18 5
M[i, w] = M[i-1, w]
loe 4 22 6
M[i, w] = max {M[i-1, w], v; + M[i-1, W-W; 1} 5 28 7

30

Knapsack Problem: Running Time

Running time. ©(n W).
« Not polynomial in input size!
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

31

String Similarity

How similar are two strings?

m Ocurrance

o

- [IE - AOAnE
» < I - EIEE -

5 mismatches, 1 gap

m occurrence

O mismatches, 3 gaps

41

Edit Distance

Applications.

« Basis for Unix diff.

= Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
- Gap penalty §; mismatch penalty o,.
. Cost = sum of gap and mismatch penalties.

B : " A c@d™ PcteaccTac@rT
BB : " AacPBlt™ ccte6aclTAacQrT

Qe+ QT+ Opgt 20ch 20 + Oy

42

Sequence Alignment

Goal: Given two strings X = x; X, ... x,and¥Y =y, y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and ho crossings.

Def. The pair x;-y; and x;.-y; cross if i <i’, but j>j'.

cost(M) = Eaxiyj + Yy 6+ Yy 0

(xp,y)EM i:x;unmatched ;:y, unmatched
misﬁlfatch gzp
X; X, X3 X4 Xg X
Ex: CTACCG VS. TACATG. Ol IR ARG - G
Sol: M = X5-Y1, X3-Y2, X4-Y3, X57Y4, Xg~Ye- - T

A CHES T 6
Yi Y2 Y3 Ya Ys Ve

43

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; x, ... x,andy; vy, ...

- Case 1: OPT matches x-y;.
- pay mismatch for x;-y; +min cost of aligning two strings

X1 Xo ... X q and YiYo ... Yj-l
« Case 2a: OPT leaves x; unmatched.

- pay gap for x. and min cost of aligning x; x . . .

. Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; x, . . .

OPT(i, j) =

jo

min -

”axiyj +OPT(i-1, j-1)

5+OPT(i-1,)

i0

5+OPT(i, j-1)

xi-l Clnd YI YZ ...

XiandylyZ...

if 1=0

otherwise

if j=0

44

Sequence Alignment: Algorithm

Sequence-Alignment (m, n, X;X,...X,, YiVo---Yo, 0, @) {
for i = 0 tom
M[O0, i] = id
for =0 ton
M[j, 0] = jo

for i =1 tom
for 3 =1 ton
M[i, j] = min(a[xi,yj] + M[i-1, j-1],
O + M[i-1, 3],
O + M[i, j-11])
return M[m, n]

Analysis. ©(mn) tfime and space.
English words or sentences: m,n < 10.
Computational biology: m = n =100,000. 10 billions ops OK, but 10G6B array?

45

