Chapter 6

Dynamic Programming

3 Nt s

JON KLEINBERG - EVA TARDOS

PEARSON

BEARSONY 2

Addison i
esley 9

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
« Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
.« Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

« Bioinformatics.

. Control theory.

. Information theory.

. Operations research.

. Computer science: theory, graphics, AL, systems, ...

Some famous dynamic programming algorithms.

. Viterbi for hidden Markov models.

« Unix diff for comparing two files.

« Smith-Waterman for sequence alignment.

« Bellman-Ford for shortest path routing in networks.

« Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at sj. finishes at fj, and has weight or value Vi
. Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
. Consider jobs in ascending order of finish time.

. Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 1000 b
weight = 1 a
» Time
0 1 2 3 4 5 6 7 8 9 10
weight = 1000 E
weight =999 @i @ @ @ aQ Q G G G q
» Time

by
finish

weight

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...=<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0. i |pG)

0
: 1o
2 |o

2
3 o
3
4 |1
4

5 5 |0
- 6 |2
> 7 |3
3 8 |5

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., .

. Case 1: OPT selects job j.
- can't use incompatible jobs { p(j) + 1, p(j) + 2, .., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j)

optimal substructure

e
. Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
) {max{vj+OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: n, S;,..,8, , £1,., £, Vi, v,
Sort jobs by finish times so that £, = £, = ... = £ .
Compute p(1), p(2), .., p(n)

Compute-Opt (j) {

if (3 = 0)
return 0
else

return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of “layered" instances grows
like Fibonacci sequence.

p(1) =0, p(j) = j-2

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

Input: n, S;,..,8, , £1,., £, Vi,., v,

Sort jobs by finish times so that £, = £, = ... = £ .
Compute p(1), p(2), .., p(n)

for j =
M[j]
M[0] = O

1l ton
= empty < globalarray

M-Compute-Opt (j) {
if (M[J] is empty)
M[3] = max(w:-| + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[Jj]

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
« Sort by finish time: O(h log n).
« Computing p(-): O(n) after sorting by start time.

. M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value 11(5]
- (ii) fills in one new entry M(j] and makes two recursive calls
« Progress measure ® = # nonempty entries of M[].
- initially ® = 0, throughout @ <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

« Overall running time of M-Compute-opt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, S;,..,8, , £1,., £, Vi,., v,
Sort jobs by finish times so that f;, = £, = ... = £
Compute p(1), p(2), .., p(n)

Iterative-Compute-Opt {
M[0] =0
for j 1 ton

max (v; + M[p(j)], M[j-1])

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...=<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: P(B) =5, P(7) =3, P(Z) =0. i vj] optj
0 -
1 | 0
2 0
2
3 0
3
4
4

5 5 0
6 6 2
7 7 3
8 8 5

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution(n)

Find-Solution(j) {

if (j = 0)
output nothing

else if (v; + M[p(3)] > M[j-1])
print j
Find-Solution (p(3j))

else
Find-Solution (j-1)

. # of recursive calls = n = O(n).

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

. Given nobjects and a "knapsack."

. Item i weighs w; > O kilograms and has value v;> 0.
. Knapsack has capacity of W kilograms.

« Goal: fill knapsack so as to maximize total value.

[ren v o]
1 1 1

Ex: { 3,4} has value 40.

w=1 2 6 2
S 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy hot optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1: OPT does not select item i.
- OPT selects best of {1, 2, ..., i-1}

« Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i, we don't
even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1} using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1} using this new weight limit

0 if i=0
OPT(i,w)=4OPT(i—1,w) if w;>w
max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: n, Wy, .., Wy Vi, ., Vy

for w=0 to W
M[O, w] =0

for i =1 ton
for w=1to W
if (wy > w)
M[i, w] = M[i-1, w]
else
M[i, w] = max {M[i-1, w], v; + M[i-1, w-w;]}

return M[n, W]

Knapsack Algorithm

o
(1 ot 11
w2y fol 1 [e]7
(12,3} o 1 6 7
{1,2,3,4) 0 1 6 7
{1,2,3,45) 0 1 6 7
OPT: {4,3)

value = 22 + 18 = 40

if (wy > w)
M[i, w] = M[i-1, w]
else

M[i, w] = max {M[i-1, w], v; + M[i-1, w-w;]}

1
7

7
7

W+1 >

1
7

o[t]2]3]4]56/7]8]5 w0 n]
[00o o o 0 o o 0 0 0o 0 o

1 1 1 1 1 1

77 7 7 7
7 18 19 24 25 25 25 25
18 22 24 28 29 29
18 22 28 29 34 34

B

2 6 2
S 18 5
4 22 6
5 28 7

Knapsack Problem: Running Time

Running time. ©(n W).

« Not polynomial in input size!

« "Pseudo-polynomial."

. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

String Similarity

How similar are two strings?
= ocurrance

= oOccurrence

o

- [- BaEEE
< & - BBnA -

5 mismatches, 1 gap

c‘.urr‘unce
CCUPP‘EI‘IC&

1 mismatch, 1 gap

c‘.urr‘.ance
ccurr‘e‘.nce

0 mismatches, 3 gaps

a1

Edit Distance

Applications.

« Basis for Unix diff.

. Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
« Gap penalty 8; mismatch penalty .
« Cost = sum of gap and mismatch penalties.

cBAAc: -~ c@T BcrtesaccTaclAT
cEAEBfAc: A~ c@T ccTteaclTAacAT

Orc+ Ogr+ Oagt 20c, 28+ Ocp

Sequence Alignment

Goal: Given two strings X = x; X, ... X, and Y =y, y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and ho crossings.

Def. The pair x-y; and x;-y;: cross if i <i’, but j> j'.

cost(M) = an] + S 6+ Y 6

(. 3)EM ix;unmatched j: y; unmatched
mismatch aap
X X, X3 X4 Xy Xo
Ex: CTACCG vS. TACATG. Clv A6 ‘- 6

Sol: M = X,-Y1, X3-Y,, Xa-Y3, X5-Ya, Xg-Ye-
27Y1. X37Y2, X47Y3, X57Y4, X6 Ve ‘-T A C‘T G
2 Ya Ya Y5 Y

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; x, ... x;andy;y, ...y;.
- Case 1: OPT matches x;-y;.

- pay mismatch for x;-y; + min cost of aligning two strings

Xy Xp ... Xigandy; Yz ... Yy

. Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning X, X, ... x.;andy;yz .. .y;
- Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; X, ... X;and y; y, . .. yj4

Jjo if i=0
a,, +OPT(i-1, j-1)
OPT(i, j)=1 min { 6+OPT(i-1, j) otherwise
8+ OPT(i, j-1)
i if j=0

Sequence Alignment: Algorithm

Sequence-Alignment(m, n, X;X,...X;, Y1¥2---Ya, O, @) {
for i =0 tom
M[0, i] = id
for j =0 ton
M[j, 0] = 38

for i =1tom
for j =1 ton
M[i, j] = min(a[x; y;] + M[i-1, j-1],
8 + M[i-1, 3,
8 + M[i, j-11)
return M[m, n]

Analysis. ©(mn) time and space.
English words or sentences: m, n = 10.
Computational biology: m = n=100,000. 10 billions ops OK, but 106B array?

