

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

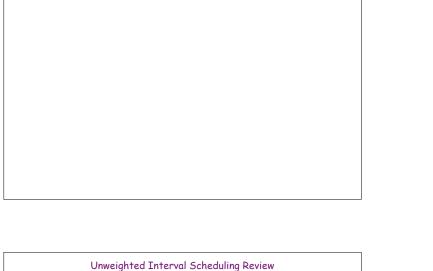
Areas

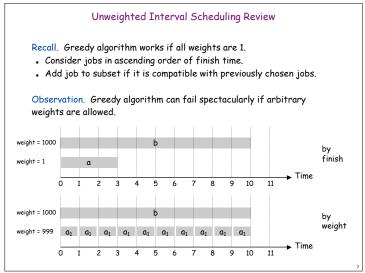
- Bioinformatics.
- . Control theory.
- . Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems,

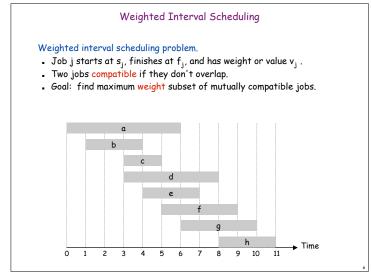
Some famous dynamic programming algorithms.

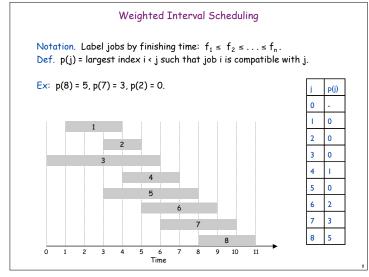
- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling









Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

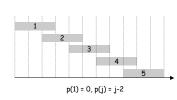
- Case 1: OPT selects job j.
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $\,$ j-1

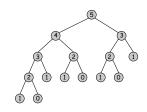
$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \left\{ v_j + OPT(p(j)), \ OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

 $\ensuremath{\mathsf{Ex}}.$ Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.





Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {

   if (j = 0)

      return 0

   else

      return \max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))
}
```

Weighted Interval Scheduling: Memoization

 $\begin{tabular}{ll} Memoization. Store results of each sub-problem in a cache; lookup as needed. \end{tabular}$

```
Input: n, s<sub>1</sub>,...,s<sub>n</sub>, f<sub>1</sub>,...,f<sub>n</sub>, v<sub>1</sub>,...,v<sub>n</sub>

Sort jobs by finish times so that f<sub>1</sub> ≤ f<sub>2</sub> ≤ ... ≤ f<sub>n</sub>.

Compute p(1), p(2), ..., p(n)

for j = 1 to n
    M[j] = empty ← global array

M[0] = 0

M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(w<sub>j</sub> + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

- Sort by finish time: O(n log n).
- Computing $p(\cdot)$: O(n) after sorting by start time.
- M-Compute-Opt (j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j]
 - (ii) fills in one new entry $M[\frac{1}{2}]$ and makes two recursive calls
- Progress measure Φ = # nonempty entries of M[].
 - initially Φ = 0, throughout $\Phi \leq$ n.
 - (ii) increases Φ by $1 \Rightarrow$ at most 2n recursive calls.
- Overall running time of M-Compute-Opt (n) is O(n). ■

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = \max(v_j + M[p(j)], M[j-1])
}
```

Weighted Interval Scheduling: Finding a Solution

- ${\bf Q}.$ Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

• # of recursive calls $\leq n \Rightarrow O(n)$.

6.4 Knapsack Problem

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i / w_i . Ex: { 5, 2, 1} achieves only value = 35 \Rightarrow greedy not optimal.

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- . Case 2: OPT selects item i.
 - new weight limit = w w_i
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), & v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w<sub>i</sub>,..., w<sub>N</sub>, v<sub>i</sub>,..., v<sub>N</sub>

for w = 0 to W
    M[0, w] = 0

for i = 1 to n
    for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

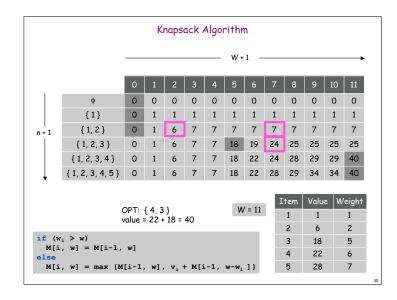
return M[n, W]
```

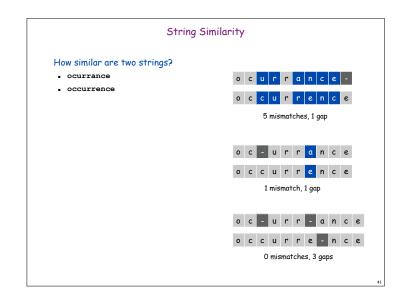
Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]





Edit Distance

Applications.

- Basis for Unix diff.
- . Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- . Gap penalty δ ; mismatch penalty $\alpha_{\rm pq}.$
- Cost = sum of gap and mismatch penalties.

42

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_i$.

- Case 1: OPT matches x_i - y_i .
 - pay mismatch for x_i y_j + min cost of aligning two strings x_1 x_2 \dots x_{i-1} and y_1 y_2 \dots y_{j-1}
- Lase 2a: OPT leaves x_i unmatched.
- pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_i$
- Case 2b: OPT leaves y; unmatched.
 - pay gap for y_i and min cost of aligning $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_{i-1}$

$$OPT(i, j) = \begin{cases} j\delta & \text{if } i = 0 \\ \min \left\{ \begin{array}{ll} \alpha_{x_i, y_j} + OPT(i-1, j-1) \\ \delta + OPT(i-1, j) & \text{otherwise} \\ \delta + OPT(i, j-1) \\ i\delta & \text{if } j = 0 \end{array} \right. \end{cases}$$

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i - y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i - y_j and x_i - y_j cross if i < i', but j > j'.

$$\mathrm{cost}(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\mathrm{mismatch}} + \underbrace{\sum_{i : x_i \, \mathrm{unmatched}} \delta + \sum_{j : y_j \, \mathrm{unmatched}} \delta}_{\mathrm{gap}}$$

Ex: CTACCG VS. TACATG.

Sol: $M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6$

C T A C C - G

 X_1 X_2 X_3 X_4 X_5 X_6

 $y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_6$

Sequence Alignment: Algorithm

```
Sequence-Alignment (m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
    for i = 0 to m
        M[0, i] = i\delta
    for j = 0 to n
        M[j, 0] = j\delta

    for i = 1 to m
        for j = 1 to n
        M[i, j] = \min(\alpha[x_i, y_j] + M[i-1, j-1], \delta + M[i-1, j], \delta + M[i, j-1])
    return M[m, n]
```

Analysis. $\Theta(mn)$ time and space.

English words or sentences: $m, n \le 10$.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?