CSE 421: Intro Algorithms

Summer 2007 W. L. Ruzzo Dynamic Programming, I Fibonacci & Stamps

ı

Dynamic Programming

Outline:

General Principles

Easy Examples – Fibonacci, Licking Stamps

Meatier examples

RNA Structure prediction

Weighted interval scheduling

Maybe others

2

Some Algorithm Design Techniques, I

General overall idea

Reduce solving a problem to a smaller problem or problems of the same type

Greedy algorithms

Used when one needs to build something a piece at a time

Repeatedly make the *greedy* choice - the one that looks the best right away

e.g. closest pair in TSP search

Usually fast if they work (but often don't)

3

Some Algorithm Design Techniques, II

Divide & Conquer

Reduce problem to one or more sub-problems of the same type

Typically, each sub-problem is at most a constant fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Some Algorithm Design Techniques, III

Dynamic Programming

again and again in the solution

Give a solution of a problem using smaller subproblems, e.g. a recursive solution Useful when the same sub-problems show up

5

"Dynamic Programming"

Program — A plan or procedure for dealing with some matter

- Webster's New World Dictionary

6

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

A very simple case: Computing Fibonacci Numbers

Recall
$$F_n = F_{n-1} + F_{n-2}$$
 and $F_0 = 0$, $F_1 = 1$

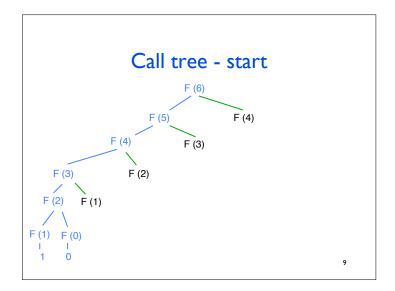
Recursive algorithm:

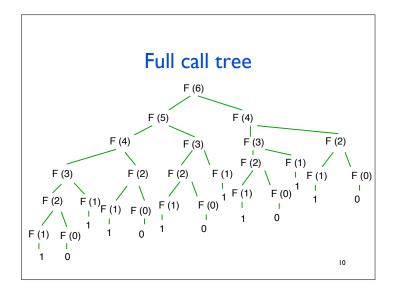
```
Fibo(n)

if n=0 then return(0)

else if n=1 then return(1)

else return(Fibo(n-1)+Fibo(n-2))
```





Memo-ization (Caching)

Remember all values from previous recursive calls

Before recursive call, test to see if value has already been computed

Dynamic Programming

NOT memoized; instead, convert memoized alg from a recursive one to an iterative one (top-down → bottom-up)

П

Fibonacci - Memoized Version

```
\label{eq:finitialize:} \begin{split} & \text{initialize: } F[i] \leftarrow \text{undefined for all i} \\ & F[0] \leftarrow 0 \\ & F[1] \leftarrow 1 \\ & \text{FiboMemo(n):} \\ & & \text{if(}F[n] \text{ undefined) } \{ \\ & & F[n] \leftarrow \text{FiboMemo(n-2)+FiboMemo(n-1)} \\ & \} \\ & & \text{return(}F[n]) \end{split}
```

Fibonacci - Dynamic Programming Version

```
FiboDP(n):

F[0] \leftarrow 0

F[1] \leftarrow 1

for i=2 to n do

F[i] \leftarrow F[i-1]+F[i-2]

endfor

return(F[n])
```

For this problem, keeping only last 2 entries instead of full array suffices, but about the same speed

13

Dynamic Programming

Useful when

Same recursive sub-problems occur repeatedly Parameters of these recursive calls anticipated The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved "principle of optimality"

14

Making change

Given:

Large supply of 1 ¢, 5 ¢, 10 ¢, 25 ¢, 50 ¢ coins An amount N

Problem: choose fewest coins totaling N

Cashier's (greedy) algorithm works:

Give as many as possible of the next biggest denomination

15

Licking Stamps

Given:

Large supply of 5ϕ , 4ϕ , and 1ϕ stamps An amount N

Problem: choose fewest stamps totaling N

How to Lick 27¢

# of 5¢ stamps	# of 4 ¢ stamps	# of I¢ stamps	total number
5	0	2	7
4	I	3	8
3	3	0	6

Morals: Greed doesn't pay; success of "cashier's alg" depends on coin denominations

17

A Simple Algorithm

At most N stamps needed, etc.

for a = 0, ..., N {
 for b = 0, ..., N {
 for c = 0, ..., N {
 if
$$(5a+4b+c == N \&\& a+b+c is new min)$$
 {retain $(a,b,c);}$ }
output retained triple;

Time: $O(N^3)$

(Not too hard to see some optimizations, but we're after bigger fish...)

18

Better Idea

<u>Theorem:</u> If last stamp in an opt sol has value v, then previous stamps are opt sol for N-v.

<u>Proof:</u> if not, we could improve the solution for N by using opt for N-v.

Alg: for i = 1 to n:

$$M(i) = \min \begin{cases} 0 & i=0 \\ 1+M(i-5) & i \ge 5 \\ 1+M(i-4) & i \ge 4 \\ 1+M(i-1) & i \ge 1 \end{cases}$$

where $M(i) = \min$ number of stamps totaling $i\phi$

19

Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

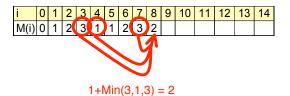
Top-down: "memoization" Bottom up:

for i = 0, ..., N do
$$M[i] = \min \begin{cases} 0 & i=0 \\ 1+M[i-5] & i \ge 5 \\ 1+M[i-4] & i \ge 4 \\ 1+M[i-1] & i \ge 1 \end{cases}$$
;

Time: O(N)

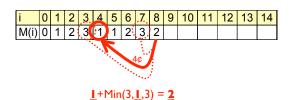
21

Finding How Many Stamps



22

Finding Which Stamps: Trace-Back



23

Trace-Back

Way I: tabulate all

add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what's needed

```
TraceBack(i):
   if i == 0 then return;
   for d in {1, 4, 5} do
      if M[i] == 1 + M[i - d] then break;
   print d;
   TraceBack(i - d);
```

Complexity Note

O(N) is better than $O(N^3)$ or $O(3^{N/5})$

But still exponential in input size (log N bits)

(E.g., miserable if N is 64 bits – $c \cdot 2^{64}$ steps & 2^{64} memory.)

Note: can do in O(1) for 5ϕ , 4ϕ , and 1ϕ but not in general. See "NP-Completeness" later.

25

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

"Optimal Substructure"

Optimal solution contains optimal subproblems A non-example: min (number of stamps mod 2)

"Repeated Subproblems"

The same subproblems arise in various ways