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Huffman Codes:
An Optimal Data Compression

Method
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Compression Example

100k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char:  800kbits
23 > 6;  3 bits/char:  300kbits

Why?
Storage, transmission vs 5 Ghz cpu

a 45%
b 13%
c 12%
d 16%
e   9%
f   5%
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Compression Example

100k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char:  800kbits

23 > 6;  3 bits/char:  300kbits
better:
2.52 bits/char 74%*2 +26%*4: 252kbits

Optimal?

a 45%
b 13%
c 12%
d 16%
e   9%
f   5%

E.g.:
a 00
b 01
d 10
c 1100
e 1101
f 1110

Why not:
00
01
10
110
1101
1110

1101110 = cf or ec?
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Data Compression

Binary character code (“code”)
each k-bit source string maps to unique code word (e.g.
k=8)

“compression” alg: concatenate code words for
successive k-bit “characters” of source

Fixed/variable length codes
all code words equal length?

Prefix codes
no code word is prefix of another (unique decoding)



Prefix Codes = Trees

f      a    b

a 45%
b 13%
c 12%
d 16%
e   9%
f   5%

1 0 1 0 0 0 0 0 1                           1 1 0 0 0 1 0 1

  f        a       b
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Greedy Idea #1

Put most frequent
under root, then recurse …

a 45%
b 13%
c 12%
d 16%
e   9%
f   5%

a:45

100

    .
  .   .
.      .
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Greedy Idea #1

Put most frequent
under root, then recurse

Too greedy:
unbalanced tree
.45*1 + .16*2 + .13*3 … = 2.34

not too bad, but imagine if all
freqs were ~1/6:
 (1+2+3+4+5+5)/6=3.33

a:45

100

d:16

55

b:13

29

.
  .
    .

a 45%
b 13%
c 12%
d 16%
e   9%
f   5%
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Greedy Idea #2

Divide letters into 2
groups, with ~50%
weight in each;
recurse
(Shannon-Fano code)

Again, not terrible
2*.5+3*.5 = 2.5

But this tree
can easily be
improved!  (How?)

a 45%
b 13%
c 12%
d 16%
e   9%
f   5%

100

50

a:45

50

f:5

b:13

25

c:12 d:16

25

e:9
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Greedy idea #3

Group least frequent
letters near bottom 100

f:5

14

.
  .
    .

e:9

c:12

25

b:13

    .
  .
.

a 45%
b 13%
c 12%
d 16%
e   9%
f   5%





.45*1 +  .41*3 + .14*4
= 2.24 bits per char
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Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq

while queue length > 1 do
remove smallest 2; call them x, y
make new node z from them, with f(z) = f(x) + f(y)
insert z into queue

Analysis: O(n) heap ops: O(n log n)

Goal:      Minimize

Correctness:  ???

! 

B(T ) = freq(c)*depth(c)
c"C

#
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Correctness Strategy

Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer.

Instead, show that greedy’s solution is as
good as any.



Claim: If we flip an inversion, cost never increases.

Why?  All other things being equal, better to give more frequent
letter the shorter code.

                    before                              after

I.e. non-negative cost savings.

Defn: A pair of leaves is an inversion if

  depth(x) ≥ depth(y)

and

  freq(x) ≥ freq(y)

(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =

(d(x) - d(y)) * (f(x) - f(y)) ≥ 0
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The 2 least frequent letters might
as well be siblings at deepest level

Let a be least freq, b 2nd

Let u, v be siblings at
max depth, f(u) ≤ f(v)
(why must they exist?)

Then (a,u) and (b,v) are
inversions.  Swap them.

Lemma 1:
“Greedy Choice Property”
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Let (C, f) be a problem instance: C an n-letter alphabet with
letter frequencies f(c) for c in C.

For any x, y in C, let C’ be the (n-1) letter alphabet
C - {x,y} ∪ {z} and for all c in C’ define

Let T’ be an optimal tree for (C’,f’).
Then

is optimal for (C,f) among all trees having x,y as siblings

Lemma 2

! 

f '(c) =
" 
# 
$ 

f(c), if c % x,y,z
f(x) + f(y), if c = z

T’

x y
zT =



! 

B(T) = dT (c)
c"C

# $ f (c)

B(T) % B(T ') = dT (x) $ ( f (x) + f (y)) % dT ' (z) $ f '(z)

= (dT ' (z) +1) $ f '(z) % dT ' (z) $ f '(z)

= f '(z)

Proof:

Suppose    (having x & y as siblings) is better than T, i.e. 

 Collapse x & y to z, forming      ; as above:

 
Then:

Contradicting optimality of T’

'T̂

! 

B( ˆ T )" B( ˆ T ') = f '(z)

B( ˆ T ') = B( ˆ T ) " f '(z) < B(T) " f '(z) = B(T ')

T̂

! 

B( ˆ T ) < B(T ).

T’

x y
z
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Theorem:
Huffman gives optimal codes

Proof: induction on |C|
Basis: n=1,2 – immediate
Induction: n>2

Let x,y be least frequent
Form C´, f´, & z, as above
By induction, T´ is opt for (C ´,f´)
By lemma 2, T´ →T is opt for (C,f) among trees
with x,y as siblings

By lemma 1, some opt tree has x, y as siblings
Therefore, T is optimal.
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Data Compression

Huffman is optimal.
BUT still might do better!

Huffman encodes fixed length blocks.  What if we vary
them?

Huffman uses one encoding throughout a file.  What if
characteristics change?
What if data has structure?  E.g. raster images, video,…

Huffman is lossless.  Necessary?

LZW, MPEG, …
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David A. Huffman, 1925-1999
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