CSE 421
Algorithms
Summer 2007

Huffman Codes:
An Optimal Data Compression
Method

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23> 6; 3 bits/char: 300kbits

Why!

Storage, transmission vs 5 Ghz cpu

Compression Example

|00k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23> 6; 3 bits/char: 300kbits

better: > <
2.52 bits/char 74%+2 +26%+4: 252kbits

Optimal?

’

N

E.
a
b
d
C
e
f

Why not:

00 00
Ol Ol

|0 |10

1100 110
101 1101
110 1110

Data Compression

Binary character code (“code’)

each k-bit source string maps to unique code word (e.g.
k=8)

“compression” alg: concatenate code words for
successive k-bit “characters” of source

Fixed/variable length codes

all code words equal length?

Prefix codes

no code word is prefix of another (unique decoding)

Prefix Codes = Trees

~—.

/

Greedy |dea #|

Put most frequent

under root, then recurse ...

a:45

Too greedy:

unbalanced tree
A45%1 + .16%2 + .13*¥3 ... = 2.34
not too bad, but imagine if all
freqs were ~1/6:
(1+2+3+4+5+5)/6=3.33

b:13

recurse
(Shannon-Fano code)

Again, not terrible
2*%5+3*%5 =125

But this tree
can easily be
improved! (How?)

b:13

c:12

d:16

e:9

Greedy idea #3

Group least frequent
letters near bottom

=

c:12

b:13

f:5

e:9

9

(@) [£5]]e9] [c:12] {b:13] |d:16] [a:45 ® |12} {b:13 d:16| [a:45
0/ \I
£5] | e9]
(c) 14) _[z1g] 245 243
0o/ \t o/ \I
£51 | ef c:12f [b:13
(¢) [a:45]

(2)

d:16

{a:45

O |12

b:13

Le:9]

d:16

{a:45

(d)
0 1

c:12

b:13

(e)

a:45

(f)

451 + 41*3 + .14*4
= 2.24 bits per char

Huffman’s Algorithm (1952)

Algorithm:

Analysis: O(n) heap ops: O(n log n)
Goal: Minimize B(T)= Ecec freq(c) * depth(c)

Correctness: ??

Correctness Strategy

Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer.

Instead, show that greedy’s solution is as
good as any.

T 74

Defn: A pair of leaves is an inversion if : /
depth(x) = depth(y) .
A m
and [/
freq(x) = freq(y) /\
X

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent
letter the shorter code.

(d(x)*f(x) + d(y)*t(y)) - (d(x)*f(y) + d(y)*f(x)) =
(d(x) - d(y)) * (f(x) - f(y)) = 0

l.e. non-negative cost savings.

Lemma |:
“Greedy Choice Property”

The 2 least frequent letters might
as well be siblings at deepest level
Let a be least freq, b 2"

Let u, v be siblings at
max depth, f(u) < f(v)
(why must they exist?) ’§

A
Then (a,u) and (b,v) are - 7
inversions. Swap them. \\, |é/ ‘\:‘L

Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet with
letter frequencies f(c) for c in C.

For any x, y in C, let C’ be the (n-1) letter alphabet
C - {x,y} U {z} and for all c in C’ define
o f(c), if c=X,y,z
f(c)‘{ f(x)+£(y), if c=z

Let T’ be an optimal tree for (C’,f).

Then
—_ T’
T 2
X y
is optimal for (C,f) among all trees having x,y as siblings

Proof:

B(T)=) _ d(c) f(c)

2

x| [y

B(T)-B(T")=d;(x)- (f(x)+ f(¥)—dr(2): }'(2)

=(d;(D)+ 1) f'(2)=-dn(2) f'(2)

= f'(2)

Suppose f(having x &y as siblings) is better than T, i.e.

B(f) <B(T). Collapse x & y to z, forming f'; as above:

B(T)-B(T) = f'(2)
Then:

B(T") = B(T) - f'(z) <B(T)- f'(z)=B(T")

Contradicting optimality of T

Theorem:
Huffman gives optimal codes

Proof: induction on |C]|

Basis: n=1,2 — immediate

Induction: n>2
Let x,y be least frequent
Form C’, f', & z, as above
By induction, T" is opt for (C ',f")
By lemma 2, T" —T is opt for (C,f) among trees

with X,y as siinngs

By lemma |, some opt tree has X, y as siblings
Therefore, T is optimal.

Data Compression

Huffman is optimal.
BUT still might do better!

Huffman encodes fixed length blocks. What if we vary
them!?

Huffman uses one encoding throughout a file. What if
characteristics change!?

What if data has structure! E.g. raster images, video,...

Huffman is lossless. Necessary?

LZWV, MPEG, ...

