
1

1

CSE 421: Intro Algorithms

2: Analysis

Summer 2007

Larry Ruzzo

2

Defining Efficiency

“Runs fast on typical real problem instances”

Pro:
sensible, bottom-line-oriented

Con:
moving target (diff computers, compilers, Moore’s law)
highly subjective (how fast is “fast”? what’s “typical”?)

3

Efficiency

Our correct TSP algorithm was incredibly slow

Basically slow no matter what computer you have

We want a general theory of “efficiency” that is
Simple
Objective
Relatively independent of changing technology
But still predictive - “theoretically bad” algorithms should
be bad in practice and vice versa (usually)

4

Measuring efficiency

Time ≈ # of instructions executed in a simple
programming language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long
string,…) built in; write it/charge for it as above

 No fixed bound on the memory size

2

5

We left out things but...

Things we’ve dropped
memory hierarchy

disk, caches, registers have many orders of magnitude
differences in access time

not all instructions take the same time in practice
different computers have different primitive instructions

However,
the RAM model is useful for designing algorithms and
measuring their efficiency
one can usually tune implementations so that the
hierarchy etc. is not a huge factor

6

T

n

Complexity
analysis

Problem size n
Worst-case complexity: max # steps algorithm
takes on any input of size n

Best-case complexity: min # steps algorithm
takes on any input of size n

Average-case complexity: avg # steps algorithm
takes on inputs of size n

7

Pros and cons:

Best-case
unrealistic oversell

Average-case
over what probability distribution? (different people may
have different “average” problems)
analysis often hard

Worst-case
a fast algorithm has a comforting guarantee
maybe too pessimistic

8

Why Worst-Case Analysis?

Appropriate for time-critical applications, e.g.
avionics
Unlike Average-Case, no debate about what the
right definition is

If worst >> average, then (a) alg is doing something
pretty subtle, & (b) are hard instances really that rare?

Analysis often easier
Result is often representative of "typical" problem
instances
Of course there are exceptions…

3

9

General Goals

Characterize growth rate of (worst-case) run time as
a function of problem size, up to a constant factor
Why not try to be more precise?

Technological variations (computer, compiler, OS, …)
easily 10x or more
Being more precise is a ton of work
A key question is “scale up”: if I can afford to do it today,
how much longer will it take when my business problems
are twice as large? (E.g. today: cn2, next year: c(2n)2 =
4cn2 : 4 x longer.)

10

Complexity

The complexity of an algorithm associates a number
T(n), the worst-case time the algorithm takes, with
each problem size n.

Mathematically,
T: N+ → R+

that is T is a function that maps positive integers (giving
problem sizes) to positive real numbers (giving number
of steps).

11
Problem size

Ti
m

e

T(n)

Complexity

12
Problem size

Ti
m

e

T(n)

n log2n

2n log2n

Complexity

4

13

O-notation etc

Given two functions f and g:N→R
f(n) is O(g(n)) iff there is a constant c>0 so that

 f(n) is eventually always ≤ c g(n)

f(n) is Ω (g(n)) iff there is a constant c>0 so that
 f(n) is eventually always ≥ c g(n)

f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that
eventually always c1g(n) ≤ f(n) ≤ c2g(n)

14

Examples

10n2-16n+100 is O(n2) also O(n3)
10n2-16n+100 ≤ 11n2 for all n ≥ 10

10n2-16n+100 is Ω (n2) also Ω (n)

10n2-16n+100 ≥ 9n2 for all n ≥16

Therefore also 10n2-16n+100 is Θ (n2)

10n2-16n+100 is not O(n) also not Ω (n3)

15

Properties

Transitivity.
If f = O(g) and g = O(h) then f = O(h).
If f = Ω(g) and g = Ω(h) then f = Ω(h).
If f = Θ(g) and g = Θ(h) then f = Θ(h).

Additivity.
If f = O(h) and g = O(h) then f + g = O(h).
If f = Ω(h) and g = Ω(h) then f + g = Ω(h).
If f = Θ(h) and g = O(h) then f + g = Θ(h).

16

2 + 2 is 4 2n2 + 5 n is O(n3)

2 + 2 = 4 2n2 + 5 n = O(n3)

4 = 2 + 2 O(n3) = 2n2 + 5 n

All dogs are mammals All mammals are dogs

Bottom line:
OK to put big-O in R.H.S. of equality, but not left.
[Better, but uncommon, notation: T(n) ∈ O(f(n)).]

“One-Way Equalities”

5

17

Working with O-Ω-Θ notation

Claim: For any a, and any b>0, (n+a)b is Θ(nb)
(n+a)b ≤ (2n)b for n ≥ |a|

= 2bnb

= cnb for c = 2b

so (n+a)b is O(nb)

(n+a)b ≥ (n/2)b for n ≥ 2|a| (even if a <0)
= 2-bnb

= c’n for c’ = 2-b

so (n+a)b is Ω (nb)

18

!

log
a
b = x means ax = b

a
log

a
b

= b

(alog
a
b)log

b
n

= b
log

b
n

= n

(log
a
b)(log

b
n) = log

a
n

c log
b
n = log

a
n for the constant c = log

a
b

So :

log
b
n ="(log

a
n) ="(logn)

Working with O-Ω-Θ notation

Claim: For any a, b>1 logan is Θ (logbn)

19

!

f (n) =
n
2
, n even

n, n odd

"

$

%
&
'

f(n) ≠ Θ(na) for any a.

Fortunately, such
nasty cases are rare

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.

Big-Theta, etc. not always “nice”

20

Insertion Sort:
Ω(n2) (worst case)

O(n) (best case)

A Possible Misunderstanding?

We have looked at
type of complexity analysis

worst-, best-, average-case

types of function bounds
O, Ω, Θ

These two considerations are independent of each
other

one can do any type of function bound with any type of
complexity analysis - measuring different things with
same yardstick

6

21

log grows slower
than every
polynomial

Asymptotic Bounds for Some
Common Functions

Polynomials:
a0 + a1n + … + adnd is Θ(nd) if ad > 0

Logarithms:
O(loga n) = O(logb n) for any constants a,b > 0

Logarithms:
For all x > 0, log n = O(nx)

22

every exponential
grows faster than
every polynomial

Asymptotic Bounds for Some
Common Functions

Exponentials.
For all r > 1
and all d > 0,
nd = O(rn).

n1001.01n

23

Polynomial time

Running time is O(nd) for some constant d
independent of the input size n.

24

Why It Matters

7

25

Geek-speak Faux Pas du Jour

“Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.”

Statement doesn't "type-check."
Use Ω for lower bounds.

26

Domination

f(n) is o(g(n)) iff limn→∞ f(n)/g(n)=0
that is g(n) dominates f(n)

If a ≤ b then na is O(nb)

If a < b then na is o(nb)

Note:
if f(n) is Θ (g(n)) then it cannot be o(g(n))

27

!

lim
n"#

n
2

n
3

= lim
n"#

1

n
= 0

!

lim
n"#

n
3

e
n

= lim
n"#

3n
2

e
n

= lim
n"#

6n

e
n

= lim
n"#

6

e
n

= 0

Working with little-o

n2 = o(n3) [Use algebra]:

n3 = o(en) [Use L’Hospital’s rule 3 times]:

28

Summary

Typical initial goal for algorithm analysis is to find a
reasonably tight i.e., Θ if possible

asymptotic i.e., O or Θ

bound on usually upper bound

worst case running time
as a function of problem size

This is rarely the last word, but often helps separate
good algorithms from blatantly poor ones - so you
can concentrate on the good ones!

