CSE 421: Introduction to Algorithms
l: Overview

Summer 2007

Larry Ruzzo

Administrative
FAQ

Email
Class List Archive

Assignments
HW #1

Solutions
Lecture Notes

Computer Science & Engineering

CSE 421, Su '07: Introduction to Algorithms
> About Us > Search [> Contact Info

Lecture: EEB 025 (schemaic) MW 10:50-12:20
Office Hours Phone

Instructor: Larry Ruzzo, ruzzo at cs W? 1:00-2:00? CSE 554 206-543-6298

TA: Zizhen Yao, yzizhen at cs TBA

Course Email: cse421a su07@u.washington.edu. Use this list to ask a»-’ 41\ ik, lectures, etc.
The instructor and TA are subscribed to this list. All messae~- u ‘eneral interest may
be directed to the instructor and/or TA. You car “ “ e

[}

Catalog Description: Technior~- - % “gto .1 DOunds on computational

complexity. Particnle- - as \ v, graph problems, pattern matching.

Prerer - CS ,\N

ttp.., , J ‘ _..somework will be a mix of paper & pencil exercises and programing. Overall weights

. wudterm 15%, final 30%.
_5» rapers and/or electronic turnins are due at the start of class on the due date.
1extbook:

o Algorithm Design by Jon Kleinberg and Eva Tardos. Addison Wesley, 2006. (Available from U Book Store, Amazon, etc.)

What you'll have to do

Homework (~55% of grade)
Programming
Some small projects

Written homework assignments
English exposition and pseudo-code
Analysis and argument as well as design

Midterm / Final Exam (~15% / 30%)

Late Policy:

Papers and/or electronic turnins are due at the start of
class on the due date.

Textbook

Algorithm Design by Jon
Kleinberg and Eva
Tardos. Addison
Wesley, 2006.

| it Desigr

JON KlEINBERG EVA TARDOS

What the course is about

Design of Algorithms
design methods
common or important types of problems
analysis of algorithms - efficiency

correctness proofs

What the course is about

Complexity, NP-completeness and intractability

solving problems in principle is not enough

algorithms must be efficient
some problems have no efficient solution
NP-complete problems

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily

Very Rough Division of Time

Algorithms (7 weeks)
Analysis of Algorithms
Basic Algorithmic Design Techniques
Graph Algorithms

Complexity & NP-completeness (2 weeks)

University of Washi

"“;gsnl%'\q,‘ Computer Science & Engineering

CheCk Onllne — "“ CSE 417, Wi '06: Approximate Schedule
schedule page for =

AboutUs ~ €

Due Lecture Topic Reading

Holiday

(evolving) details oo

Intro, Examples & Complexity Ch.1;Ch. 2
Intro, Examples & Complexity
Intro, Examples & Complexity

HEIEIE

11111

=

Graph Algorithms Ch.3
F Graph Algorithms

Complexity Example

Cryptography (e.g. RSA, SSL in browsers)
Secret: p,q prime, say 512 bits each
Public: n which equals p x g, 1024 bits

In principle
there is an algorithm that given n will find p and q:
try all 2°'? possible p’s, an astronomical number

In practice
no efficient algorithm is known for this problem
security of RSA depends on this fact

Algorithms versus Machines

We all know about Moore’s Law and the
exponential improvements in hardware...

Ex: sparse linear equations over 25 years

|0 orders of magnitude improvement!

Algorithms or Hardware!?

25 years
progress

solving sparse

linear
systems

hardware: 4
orders of
magnitude

Seconds

107
106-
10>

104

G.E./ CDC 3600

CDC 6600

CDC 7600

Source: Sandia, via M. Schultz

Cray 2

Cray 3 (Est.)

100
1960

1
1970

1
1980

1
1990

2000

Algorithms or Hardware!?

107
25 years : G.E./ CDC 3600
progress o6] CDC 6600
solving] o 7600
sparse linear .
systems 10>
G il
hardware: 4 5 '
o]
orders of @2
. d] 1 Cray 3 (Est.)
magnitude 10 Sparse G.E
ft 6) . Gauss-Seidel
software: 10°-
orders of _
magnitude 10"
] CG
1| Source: Sandia, via M. Schultz
100

. T . T . T .
1960 1970 1980 1990 2000

Algorithms or Hardware!

20]
-direct sum
’;Vj\ -neighborhoods
S i
-
The =
A L
-
N-Body g
. =
Problem: .
15 .
-
&
— L
E
In 30)’ears ?ﬁj i treecode on cosmo
|07 hardware £ |
o
>,
100 software = | |
s tree tuned for planetesimals--
E 10 tree with planetesimal adaptive integrator- —
[ES
?
— tree with MVS, perturbative forces--
-| Source: T.Quinn
| l 1 | ‘ | | | 1 | |

Log(Flops)

1970 1980 1990 2000
Year

Algorithm: definition

Procedure to accomplish a task or solve a
well-specified problem

Well-specified: know what all possible inputs
look like and what output looks like given them

“accomplish” via simple, well-defined steps
Ex: sorting names (via comparison)

Ex: checking for primality (via +, -, *, /, <)

Algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board

Time: proportional to total distance the arm
must move from initial rest position around

the boarc

and

back to the initial position

For each

DOArdad

the soldering

design, find best order to do

Printed Circuit Board

Printed Circuit Board

A Well-defined Problem

Input: Given a set S of n points in the plane

Output: The shortest cycle tour that visits
each point in the set S.

Better known as “TSP”

How might you solve it?

Nearest heuristic: A rule of thumb,
N . h b simplification, or educated
elg or guess that reduces or limits

H eu riStiC the search for solutions

indomains that are difficult
and poorly understood. May
Start at some point p, be sood, but usually not

Walk first to its guaranteed to give the best

: or fastest solution.
nearest neighbor p,

Repeatedly walk to the nearest unvisited neighbor
Py, then p;,... until all points have been visited

Then walk back to p,

Nearest Neighbor

oF
Po _.-®&--~ ®.
F‘ \0
I. S
: 9
1 .
- /
| /'
’ *
p6 .\ ,/

Heuristic

An input where it works badly

Iength ~ 84 ’

16 4 1.9 2 8

20

An input where it works badly

optimal soln for this example
length ~ 64

C——l il @ il ——
16 4 1.9 2 8

pO 21

Revised idea - Closest pairs first

Repeatedly join the closest pair of points '\j

(s.t. result can still be part of a

single loop in the end. l.e, join ? <
endpoints, but not points in middle, Y
of path segments already created.) l

How does this work on our bad example?

16 4 1.9 2 8

22
Po

Another bad example

23

Another bad example

1.5 1.5

VS

L1

24

Something that works

For each of the n! = n(n-1)(n-2)...] orderings of the
points, check the length of the cycle you get

Keep the best one

25

Two Notes

The two incorrect algorithms were greedy
Often very natural & tempting ideas

They make choices that look great “locally” (and never
reconsider them)

When greed works, the algorithms are typically efficient
BUT: often does not work - you get boxed in
Our correct alg avoids this, but is incredibly slow

20! is so large that checking one billion per second
would take 2.4 billion seconds (around 70 years!)

26

Something that “works™ (differently)

|. Find Min Spanning Tree

27

Something that “works” (differently)

2. Walk around it

28

Something that “works” (differently)

3. Take shortcuts (instead of revisiting)

29

Something that “works” (differently):
Guaranteed Approximation

Does it seem wacky?

Maybe, but it’s always within a factor of 2 of
the best tour!

deleting one edge from best tour gives a
spanning tree, so Min spanning tree < best tour

best tour < wacky tour < 2 * MST < 2 * best

30

The Morals of the Story

Simple problems can be hard
Factoring, TSP

Simple ideas don’t always work
Nearest neighbor, closest pair heuristics

Simple algorithms can be very slow
Brute-force factoring, TSP

Changing your objective can be good
Guaranteed approximation for TSP

31

