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CSE 421:  Introduction to 

Algorithms

NP-completeness

Paul Beame
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Computational Complexity

� Classify problems according to the 
amount of computational resources
used by the best algorithms that solve 
them

� Recall:  
� worst-case running time of an algorithm 

� max # steps algorithm takes on any 
input of size n
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Decision problems

� Computational complexity usually analyzed 
using decision problems
� answer is just 1 or 0 (yes or no).

� Why?
� much simpler to deal with
� deciding whether G has a path from s to t, is 

certainly no harder than finding a path from s to t
in G, so a lower bound on deciding is also a lower 
bound on finding

� Less important, but if you have a good decider, 
you can often use it to get a good finder.  

4

Polynomial time

� Define P (polynomial-time) to be 
� the set of all decision problems solvable by 

algorithms whose worst-case running time 
is bounded by some polynomial in the input 
size. 
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Beyond P?

� There are many natural, practical 
problems for which we don’t know any 
polynomial-time algorithms

� e.g. decisionTSP:
� Given a weighted graph G and an integer 

k, does there exist a tour that visits all 
vertices in G having total weight at most k?
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Relative Complexity of Problems

� Want a notion that allows us to compare 
the complexity of problems
� Want to be able to make statements of the 

form
“If we could solve problem B in 
polynomial time then we can solve 
problem A in polynomial time”

“Problem B is at least as hard as problem 
A”



2

7

Polynomial Time Reduction 

� A ≤≤≤≤P B if there is an algorithm for A using a ‘black 
box’ (subroutine) that solves B that
� Uses only a polynomial number of steps 
� Makes only a polynomial number of calls to a subroutine for

B

� Thus, poly time algorithm for B implies poly time 
algorithm for A
� Not only is the number of calls polynomial but the size of the 

inputs on which the calls are made is polynomial!

� If you can prove there is no fast algorithm for A, then 
that proves there is no fast algorithm for B
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A Special kind of Polynomial-Time 
Reduction

� We will always use a restricted form of 
polynomial-time reduction often called Karp 
or many-one reduction

� A B if and only if there is an algorithm for A 
given a black box solving B that on input x
� Runs for polynomial time computing an input f(x)
� Makes one call to the black box for B
� Returns the answer that the black box gave
We say that  the function f is the reduction

1
P≤
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Why the name reduction?

� Weird: it maps an easier problem into a 
harder one

� Same sense as saying Maxwell reduced
the problem of analyzing electricity & 
magnetism to solving partial differential 
equations
� solving partial differential equations in 

general is a much harder problem than 
solving E&M problems
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A geek joke

� An engineer
� is placed in a kitchen with an empty kettle on the table and told 

to boil water; she fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

� she is next confronted with a kettle full of water sitting on the 
counter and told to boil water; she puts it on the stove, turns on 
the gas and boils water.

� A mathematician
� is placed in a kitchen with an empty kettle on the table and told 

to boil water; he fills the kettle with water, puts it on the stove, 
turns on the gas and boils water.

� he is next confronted with a kettle full of water sitting on the
counter and told to boil water: he empties the kettle in the sink, 
places the empty kettle on the table and says, “I’ve reduced this 
to an already solved problem”.
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Reductions from a Special Case to a 
General Case

� Show: Vertex-Cover ≤≤≤≤P Set-Cover
� Vertex-Cover:

� Given an undirected graph G=(V,E) and an integer 
k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G).

� Set-Cover:
� Given a set U of n elements, a collection S1,…,Sm

of subsets of U, and an integer k, does there exist 
a collection of at most k sets whose union is equal 
to U?
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The Simple Reduction

� Transformation f maps             
(G=(V,E),k) to (U,S1,…,Sm,k’ )
� U←←←←E
� For each vertex v∈V create a set Sv

containing all edges that touch v
� k’ ←←←←k

� Reduction f is clearly polynomial-time to 
compute

� We need to prove that the resulting 
algorithm gives the right answer!
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Proof of Correctness

� Two directions:  
� If the answer to Vertex-Cover on (G,k) is YES then 

the answer for Set-Cover on f(G,k) is YES
� If a set W of k vertices covers all edges then 

the collection {Sv | v∈∈∈∈ W} of k sets covers all of 
U

� If the answer to Set-Cover on f(G,k) is YES then 
the answer for Vertex-Cover on (G,k) is YES

� If a subcollection Sv1
,…,Svk

covers all of U then 

the set {v 1,…,vk} is a vertex cover in G.

14

Reductions by Simple Equivalence

� Show: Independent-Set ≤≤≤≤P Clique
� Independent-Set:

� Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge.

� Clique:
� Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an 
edge.
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Independent-Set ≤≤≤≤P Clique

� Given (G,k) as input to Independent-Set
where G=(V,E)

� Transform to (G’,k) where G’=(V,E’)
has the same vertices as G but E’
consists of precisely those edges that 
are not edges of G

� U is an independent set in G
⇔ U is a clique in G’
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More Reductions

� Show: Independent Set ≤≤≤≤P Vertex-Cover
� Vertex-Cover:

� Given an undirected graph G=(V,E) and an integer 
k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G).

� Independent-Set:
� Given a graph G=(V,E) and an integer k, is there a 

subset U of V with |U| ≥ k such that no two
vertices in U are joined by an edge.
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Reduction Idea

� Claim: In a graph G=(V,E), S is an 
independent set iff V-S is a vertex cover

� Proof:
� ⇒ Let S be an independent set in G

� Then S contains at most one endpoint of each 
edge of G

� At least one endpoint must be in V-S
� V-S is a vertex cover

� ⇐Let W=V-S be a vertex cover of G
� Then S does not contain both endpoints of any 

edge (else W would miss that edge)
� S is an independent set
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Reduction

� Map  (G,k) to (G,n-k)
� Previous lemma proves correctness

� Clearly polynomial time

� We also get that

� Vertex-Cover ≤≤≤≤P Independent Set
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Satisfiability

� Boolean variables x1,...,xn
� taking values in {0,1}.  0=false, 1=true

� Literals
� x i or ¬¬¬¬x i for i=1,...,n

� Clause
� a logical OR of one or more literals
� e.g. (x1 ∨ ¬¬¬¬x3 ∨ x7 ∨ x12)

� CNF formula
� a logical AND of a bunch of clauses

� k-CNF formula
� All clauses have exactly k variables
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Satisfiability

� CNF formula example
(x1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

� If there is some assignment of 0’s and 
1’s to the variables that makes it true 
then we say the formula is satisfiable
� the one above is, the following isn’t

� x1 ∧ (¬¬¬¬x1 ∨ x2) ∧ (¬¬¬¬x2 ∨ x3) ∧ ¬¬¬¬x3

� 3-SAT: Given a CNF formula F with 3
variables per clause, is it satisfiable?
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Common property of these problems

� There is a special piece of information, a 
short certificate or proof, that allows you to 
efficiently verify (in polynomial-time) that the 
YES answer is correct.  This certificate might 
be very hard to find

� e.g.  
� DecisionTSP : the tour itself, 
� Independent-Set , Clique : the set U
� 3-SAT: an assignment that makes F true.
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The complexity class NP

NP consists of all decision problems where 

� You can verify the YES answers efficiently 
(in polynomial time) given a short 
(polynomial-size) certificate

And

� No certificate can fool your polynomial time 
verifier into saying YES for a NO instance
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More Precise Definition of NP

� A decision problem is in NP iff there is a 
polynomial time procedure verify (.,.), 
and an integer k such that 
� for every input x to the problem that is a 

YES instance there is a certificate t with   
|t| ≤ |x|k such that verify (x,t) = YES

and
� for every input x to the problem that is a 

NO instance there does not exist a
certificate t with |t| ≤ |x|k such that 
verify (x,t) = YES
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Example: CLIQUE is in NP

procedure verify (x,t)
if 

x is a well-formed representation of  a 
graph G = (V, E) and an integer k, 

and 
t is a well-formed representation of a 
vertex subset U of V of size k, 

and 
U is a clique in G, 

then output "YES"
else output "I'm unconvinced " 
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Is it correct?

For every x = (G,k) such that G contains a   
k-clique, there is a certificate t that will 
cause verify (x,t) to say YES,
� t = a list of the vertices in such a k-clique

And no certificate can fool verify (x, ⋅⋅⋅⋅) into 
saying YES if either 
� x isn't well-formed (the uninteresting case)
� x = (G,k) but G does not have any cliques 

of size k (the interesting case)
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Keys to showing  that 
a problem is in NP

� What's the output?  (must be YES/NO)
� What must the input look like?  
� Which inputs need a YES answer?

� Call such inputs YES inputs/YES instances

� For every given YES input, is there a 
certificate that would help?
� OK if some inputs need no certificate

� For any given NO input, is there a fake 
certificate that would trick you?
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Solving NP problems 
without hints

� The only obvious algorithm for most of 
these problems is brute force :
� try all possible certificates and check each one to 

see if it works.
� Exponential time:

� 2n truth assignments for n variables
� n! possible TSP tours of n vertices

� possible k element subsets of n vertices

� etc.

n

k
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What We Know

� Nobody knows if all problems in NP can be 
done in polynomial time, i.e. does P=NP?
� one of the most important open questions in all of 

science.
� huge practical implications

� Every problem in P is in NP
� one doesn’t even need a certificate for problems in 

P so just ignore any hint you are given

� Every problem in NP is in exponential time
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NP-hardness & 
NP-completeness

� Some problems in NP seem hard
� people have looked for efficient algorithms 

for them for hundreds of years without 
success

� However
� nobody knows how to prove that they are 

really hard to solve, i.e. P≠≠≠≠ NP
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Problems in NP that seem hard

� Some Examples in NP
� 3-SAT
� Independent-Set
� Clique
� Vertex Cover

� All hard to solve; certificates seem to 
help on all

� Fast solution to any gives fast solution 
to all!
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NP-hardness & 
NP-completeness

� Alternative approach to proving problems not 
in P
� show that they are at least as hard as any problem 

in NP

� Rough definition:
� A problem is NP-hard iff it is at least as hard as 

any problem in NP
� A problem is NP-complete iff it is both

� NP-hard
� in NP

32

P and NP

NP

P

NP-complete

NP-hard
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NP-hardness & 
NP-completeness

� Definition: A problem B is NP-hard iff
every problem A∈∈∈∈NP satisfies A ≤≤≤≤PB

� Definition: A problem B is NP-complete
iff A is NP-hard and A ∈∈∈∈NP

� Even though we seem to have lots of hard 
problems in NP it is not obvious that such 
super-hard problems even exist!
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Cook-Levin Theorem

� Theorem (Cook 1971, Levin 1973):

3-SAT is NP-complete

� Recall
� CNF formula

� (x1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

� If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the 
formula is satisfiable

� 3-SAT: Given a 3-CNF formula F, is it 
satisfiable?
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Implications of Cook-Levin Theorem?

� There is at least one interesting super-
hard problem in NP

� Is that such a big deal?

� YES!
� There are lots of other problems that can 

be solved if we had a polynomial-time 
algorithm for 3-SAT

� Many of these problems are exactly as 
hard as 3-SAT
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A useful property of polynomial-time 
reductions

� Theorem: If  A ≤≤≤≤PB and B ≤≤≤≤PC then        
A ≤≤≤≤PC  

� Proof idea: (Using )
� Compose the reduction f from A to B with the 

reduction g from B to C to get a new reduction  
h(x)=g(f(x)) from A to C.

� The general case is similar and uses the fact that 
the composition of two polynomials is also a 
polynomial

1
P≤
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Cook-Levin Theorem & Implications

� Theorem (Cook 1971, Levin 1973):
3-SAT is NP-complete

For proof see CSE 431

� Corollary: B is NP-hard ⇔ 3-SAT ≤≤≤≤PB
� (or A ≤≤≤≤PB for any NP-complete problem A)

� Proof:
� If B is NP-hard then every problem in NP

polynomial-time reduces to B, in particular 3-SAT
does since it is in NP

� For any problem A in NP, A ≤≤≤≤P3-SAT and so if
3-SAT ≤≤≤≤PB we have A ≤≤≤≤P B.

� therefore A is NP-hard if 3-SAT ≤≤≤≤PB
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Another NP-complete problem:
3-SAT ≤≤≤≤PIndependent-Set

� A Tricky Reduction:
� mapping CNF formula F to a pair <G,k>
� Let m be the number of clauses of F
� Create a vertex in G for each literal in F
� Join two vertices u, v in G by an edge iff

� u and v correspond to literals in the same 
clause of F, (green edges) or

� u and v correspond to literals x and ¬¬¬¬x (or vice 
versa) for some variable x.  (red edges).

� Set k=m
� Clearly polynomial-time
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3-SAT ≤≤≤≤PIndependent-Set

F:   (x 1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

x1

¬¬¬¬x3 ¬¬¬¬x4

¬¬¬¬x1

x2

x2

x4 x3x3
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3-SAT ≤≤≤≤PIndependent-Set

� Correctness:
� If F is satisfiable then there is some assignment that 

satisfies at least one literal in each clause.  
� Consider the set U in G corresponding to the first satisfied 

literal in each clause .  
� |U|=m
� Since U has only one vertex per clause, no two vertices 

in U are joined by green edges

� Since a truth assignment never satisfies both x and ¬¬¬¬x,
U doesn’t contain vertices labeled both x and ¬¬¬¬x and so 
no vertices in U are joined by red edges

� Therefore G has an independent set, U, of size at least
m

� Therefore (G,m) is a YES for independent set.
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3-SAT ≤≤≤≤PIndependent-Set

F:   (x 1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

x1

¬¬¬¬x3 ¬¬¬¬x4

¬¬¬¬x1

x2

x2

x4 x3x3

1       0      1         1      0      1         1       0      1

Given assignment x1=x2=x3=x4=1,
U is as circled

U
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3-SAT ≤≤≤≤PIndependent-Set

� Correctness continued:
� If (G,m) is a YES for Independent-Set then there is 

a set U of m vertices in G containing no edge.
� Therefore U has precisely one vertex per 

clause because of the green edges in G.
� Because of the red edges in G, U does not 

contain vertices labeled both x and ¬¬¬¬x
� Build a truth assignment A that makes all 

literals labeling vertices in U true and for any 
variable not labeling a vertex in U, assigns its 
truth value arbitrarily.

� By construction, A satisfies F
� Therefore F is a YES for 3-SAT.
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3-SAT ≤≤≤≤PIndependent-Set

F:   (x 1 ∨∨∨∨ ¬¬¬¬x3 ∨∨∨∨ x4) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x4 ∨∨∨∨ x3) ∧∧∧∧ ( x2 ∨∨∨∨ ¬¬¬¬x1 ∨∨∨∨ x3)

x1

¬¬¬¬x3 ¬¬¬¬x4

¬¬¬¬x1

x2

x2

x4 x3x3

Given U, satisfying assignment
is x1=x3=x4=0, x2=0 or 1

0       1     0         ?       1      0         ?       1      0
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Independent-Set is NP-complete

� We just showed that Independent-Set is NP-
hard and we already knew Independent-Set
is in NP.

� Corollary: Clique is NP-complete
� We showed already that                          

Independent-Set ≤≤≤≤P Clique and Clique is 
in NP.
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Problems we already know are NP-
complete

� 3-SAT
� Independent-Set
� Clique
� Vertex-Cover

� There are 1000’s of practical problems 
that are NP-complete, e.g. scheduling, 
optimal VLSI layout etc. 
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Steps to Proving Problem B is       
NP-complete

� Show B is NP-hard:  
� State:”Reduction is from NP-hard Problem B”

� Show what the map f is
� Argue that f is polynomial time
� Argue correctness:  two directions Yes for 

A implies Yes for B and vice versa. 

� Show B is in NP
� State what hint is and why it works
� Argue that it is polynomial-time to check.
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Some other NP-complete examples 
you should know

� Hamiltonian-Cycle Given a directed graph G is 
there a cycle in G that visits each vertex in G exactly 
once?

� Hamiltonian-Path Given a directed graph G is 
there a path in G that visits each vertex in G exactly 
once?
� Both are also NP-complete when G is an undirected graph

� Note that deciding the similar questions for Eulerian-
Cycle and Eulerian-Path (which require that each 
edge be visited exactly once rather than each vertex) 
can be done in polynomial time.
� How?

48

Travelling-Salesman Problem (TSP)

� Given a set of n cities v1,…,vn and distances 
between each pair of cities d(v i,v j) what is the 
shortest tour that visits all the cities?
� Not a decision problem

� DecisionTSP :
� Given a set of distances given by d for each pair 

of cities in v1,…,vn and an integer D, does there 
exist a tour that visits all cities having total weight 
at most D?
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Hamiltonian-Cycle ≤≤≤≤PDecisionTSP

� Define the reduction
� Vertices V of G=(V,E) become cities
� Set d(v i,v j) to 1 if (v i,v j)∈E

2 if not
� Set D=|V|

� Claim: There is a Hamiltonian cycle in G
iff there is a tour of length |V|
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Graph Colorability

� Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is
� an assignment of up to k different colors to the 

vertices of G so that the endpoints of each edge have 
different colors.

� 3-Color: Given a graph G=(V,E), does G have a 
3-coloring?

� Claim: 3-Color is NP-complete
� Proof: 3-Color is in NP:

� Hint is an assignment of red,green,blue to the 
vertices of G

� Easy to check that each edge is colored correctly

51

3-SAT ≤≤≤≤P3-Color

� Reduction:
� We want to map a 3-CNF formula F to a 

graph G so that
� G is 3-colorable iff F is satisfiable
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3-SAT ≤≤≤≤P3-Color

O

TF

Base Triangle

53

3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

Variable Part: 
in 3-coloring, variable
colors correspond to
some truth assignment 
(same color as T or F)
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

Clause Part:  
Add one 6 vertex gadget per clause  connecting 
its ‘outer vertices’ to the literals in the clause

(¬¬¬¬x
1 ∨∨∨∨ x

2 ∨∨∨∨ x
n )

(x
1 ∨∨∨∨ x

3 ∨∨∨∨ x
6 )



10

55

3-SAT ≤≤≤≤P3-Color

Any truth assignment satisfying the formula 
can be extended to a 3-coloring of the graph

F

O
O

T
F

O

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬¬¬¬x
1 ∨∨∨∨ x

2 ∨∨∨∨ x
n )

(x
1 ∨∨∨∨ x

3 ∨∨∨∨ x
6 )
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3-SAT ≤≤≤≤P3-Color

Any 3-coloring of the graph colors
each gadget triangle using each color

O

F

T

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬¬¬¬x
1 ∨∨∨∨ x

2 ∨∨∨∨ x
n )

(x
1 ∨∨∨∨

x
3 ∨∨∨∨

x
6 )
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )

Any 3-coloring of the graph has an F opposite
the O color in the triangle of each gadget

O

F

T

F
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )

Any 3-coloring of the graph has T at the
other end of the blue edge connected to the F

O

F

T

F

T
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3-SAT ≤≤≤≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn
...

x2

xn

(¬x
1 ∨ x

2 ∨ x
n )

(x
1 ∨ x

3 ∨ x
6 )

Any 3-coloring of the graph yields a 
satisfying assignment to the formula

O

F

T

F

T
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More NP-completeness

� Subset-Sum problem
� Given n integers w1,…,wn and integer W
� Is there a subset of the n input integers 

that adds up to exactly W?

� O(nW) solution from dynamic programming 
but if W and each w i can be n bits long then 
this is exponential time
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3-SAT ≤≤≤≤PSubset-Sum

� Given a 3-CNF formula with m clauses 
and n variables

� Will create 2m+2n numbers that are 
m+n digits long
� Two numbers for each variable x i

� t i and f i (corresponding to x i being true 
or x i being false)

� Two extra numbers for each clause
� u j and v j (filler variables to handle 

number of false literals in clause Cj)
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3-SAT ≤≤≤≤PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C4=(x1∨¬∨¬∨¬∨¬ x2∨∨∨∨ x5)

… ….
u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

… ….

1 1 1 1 …  1  3 3 3 3 … 3W
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P vs NP

� Theory
� P = NP?
� Open Problem!
� Bet against it

� Practice
� Many interesting, useful, 

natural, well-studied 
problems known to be NP-
complete

� With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances
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Is NP as bad as it gets?

� NO!  NP-complete problems are 
frequently encountered, but there's 
worse:
� Some problems provably require 

exponential time.
� Ex: Does M halt on input x in 2|x| steps?

� Some require                              steps

� And some are just plain uncomputable

nn 2n 2 22 , 2 , 2 , ...


